Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread.
Cell Phone Use
/ statistics & numerical data
Communicable Diseases
/ epidemiology
Computational Biology
Computer Simulation
Disease Outbreaks
/ statistics & numerical data
Epidemics
/ statistics & numerical data
Geographic Information Systems
/ statistics & numerical data
Humans
Models, Biological
Models, Statistical
Namibia
/ epidemiology
Population Density
Spatio-Temporal Analysis
Time Factors
Travel
/ statistics & numerical data
Urban Population
/ statistics & numerical data
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
19
10
2020
accepted:
28
05
2021
revised:
20
08
2021
pubmed:
11
8
2021
medline:
23
11
2021
entrez:
10
8
2021
Statut:
epublish
Résumé
Human travel is one of the primary drivers of infectious disease spread. Models of travel are often used that assume the amount of travel to a specific destination decreases as cost of travel increases with higher travel volumes to more populated destinations. Trip duration, the length of time spent in a destination, can also impact travel patterns. We investigated the spatial patterns of travel conditioned on trip duration and find distinct differences between short and long duration trips. In short-trip duration travel networks, trips are skewed towards urban destinations, compared with long-trip duration networks where travel is more evenly spread among locations. Using gravity models to inform connectivity patterns in simulations of disease transmission, we show that pathogens with shorter generation times exhibit initial patterns of spatial propagation that are more predictable among urban locations. Further, pathogens with a longer generation time have more diffusive patterns of spatial spread reflecting more unpredictable disease dynamics.
Identifiants
pubmed: 34375331
doi: 10.1371/journal.pcbi.1009127
pii: PCOMPBIOL-D-20-01900
pmc: PMC8378725
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009127Subventions
Organisme : NLM NIH HHS
ID : DP2 LM013102
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI160780
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Int J Environ Res Public Health. 2011 Aug;8(8):3134-43
pubmed: 21909295
Science. 2020 May 1;368(6490):489-493
pubmed: 32179701
Nature. 1976 Jun 10;261(5560):459-67
pubmed: 934280
R Soc Open Sci. 2016 Aug 3;3(8):160294
pubmed: 27853607
PLoS Comput Biol. 2014 Jul 10;10(7):e1003716
pubmed: 25010676
Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11149-52
pubmed: 11005838
PLoS Comput Biol. 2017 Feb 10;13(2):e1005382
pubmed: 28187123
J R Soc Interface. 2013 Jan 6;10(78):20120756
pubmed: 23152104
PLoS Med. 2008 Mar 25;5(3):e74
pubmed: 18366252
Popul Health Metr. 2012 May 16;10(1):8
pubmed: 22591595
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11114-9
pubmed: 26283349
Eur J Epidemiol. 2003;18(11):1065-72
pubmed: 14620941
Trends Parasitol. 2018 Sep;34(9):772-783
pubmed: 30049602
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9
pubmed: 20018697
PLoS Comput Biol. 2016 Dec 8;12(12):e1005210
pubmed: 27930675
Science. 2012 Oct 12;338(6104):267-70
pubmed: 23066082
Science. 2003 Jun 20;300(5627):1966-70
pubmed: 12766207
Science. 2001 Jul 27;293(5530):638-43
pubmed: 11474099
PLoS Med. 2006 Oct;3(10):e436
pubmed: 17048982
Nat Commun. 2020 Sep 30;11(1):4961
pubmed: 32999287
Science. 2009 Sep 18;325(5947):1536-9
pubmed: 19762641
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22637-22638
pubmed: 32839308
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):5067-5073
pubmed: 32054785
Malar J. 2014 Feb 10;13:52
pubmed: 24512144
Science. 2003 Jun 20;300(5627):1961-6
pubmed: 12766206
Science. 2006 Apr 21;312(5772):447-51
pubmed: 16574822
Philos Trans R Soc Lond B Biol Sci. 2004 Jul 29;359(1447):1091-105
pubmed: 15306395
J Theor Biol. 2013 Dec 7;338:41-58
pubmed: 24012488
Int J Health Geogr. 2018 Jul 27;17(1):28
pubmed: 30049275
Lancet. 2015 Jan 3;385(9962):29-35
pubmed: 25458732
J Infect Dis. 2016 Dec 1;214(suppl_4):S414-S420
pubmed: 28830104
Sci Rep. 2019 Mar 26;9(1):5151
pubmed: 30914669
Nat Commun. 2017 Dec 12;8(1):2069
pubmed: 29234011
Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52
pubmed: 15007165
PLoS One. 2015 Oct 07;10(10):e0140152
pubmed: 26445147
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22572-22579
pubmed: 32839329
Science. 2007 Jun 1;316(5829):1298-301
pubmed: 17540894
Epidemiol Rev. 1993;15(2):265-302
pubmed: 8174658
Int J Infect Dis. 2020 May;94:44-48
pubmed: 32171952
BMC Med. 2007 Nov 21;5:34
pubmed: 18031574
Sci Rep. 2012;2:476
pubmed: 22741060
PLoS Comput Biol. 2016 Apr 04;12(4):e1004846
pubmed: 27043913
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2015-20
pubmed: 16461461
Lancet Infect Dis. 2020 May;20(5):553-558
pubmed: 32171059
Science. 2020 Apr 10;368(6487):145-146
pubmed: 32205458
J Theor Biol. 2012 Jan 21;293:87-100
pubmed: 22019505
Theor Biol Med Model. 2009 Nov 17;6:25
pubmed: 19919678
Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15124-9
pubmed: 15477600
Nat Commun. 2019 Feb 22;10(1):898
pubmed: 30796206
Interdiscip Perspect Infect Dis. 2011;2011:267049
pubmed: 21436998
N Engl J Med. 2014 Oct 16;371(16):1481-95
pubmed: 25244186
Lancet. 2016 Aug 13;388(10045):728-30
pubmed: 27059886
N Engl J Med. 2020 Mar 12;382(11):1009-1017
pubmed: 32160662
Science. 2020 May 1;368(6490):493-497
pubmed: 32213647
J Theor Biol. 2005 Jan 7;232(1):71-81
pubmed: 15498594
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):923-8
pubmed: 20080777