Single-Molecule Enzymology for Diagnostics: Profiling Alkaline Phosphatase Activity in Clinical Samples.
alkaline phosphatase
diagnostics
enzyme activity
sensors
single-molecule enzymology
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
05 01 2022
05 01 2022
Historique:
revised:
06
08
2021
received:
20
07
2021
pubmed:
11
8
2021
medline:
22
2
2022
entrez:
10
8
2021
Statut:
ppublish
Résumé
Enzymes can be used as biomarkers for a variety of diseases. However, profiling enzyme activity in clinical samples is challenging due to the heterogeneity in enzyme activity, and the low abundance of the target enzyme in biofluids. Single-molecule methods can overcome these challenges by providing information on the distribution of enzyme activities in a sample. Here, we describe the concept of using the single-molecule enzymology (SME) method to analyze enzymatic activity in clinical samples. We present recent work focused on measuring alkaline phosphatase isotypes in serum samples using SME. Future work will involve improving and simplifying this technology, and applying it to other enzymes for diagnostics.
Identifiants
pubmed: 34375495
doi: 10.1002/cbic.202100358
doi:
Substances chimiques
Biomarkers
0
Alkaline Phosphatase
EC 3.1.3.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202100358Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
L. A. Loeb, R. J. Monnat, Nat. Rev. Genet. 2008, 9, 594-604.
N. Allocati, M. Masulli, C. Di Ilio, L. Federici, Oncogenesis 2018, 7.
C. M. Roake, S. E. Artandi, Nat. Rev. Mol. Cell Biol. 2020, 21, 384-397.
C. L. Benn, L. A. Dawson, Front. Aging Neurosci. 2020, 12.
C. López-Otín, J. S. Bond, J. Biol. Chem. 2008, 283, 30433-30437.
J. den Hertog, EMBO Rep. 2003, 4, 1027-1031.
C. L. Benn, L. A. Dawson, Front. Aging Neurosci. 2020, 12, 242.
V. V. Ranade, Am. J. Ther. 2009, 16.
H. Bisswanger, Perspect. Sci. 2014, 1, 41-55.
A. P. Soleimany, S. N. Bhatia, Trends Mol. Med. 2020, 26, 450-468.
A. J. Ovens, J. W. Scott, C. G. Langendorf, B. E. Kemp, J. S. Oakhill, W. J. Smiles, Int. J. Mol. Sci. 2021, 22, 1-28.
K. A. Johnson, R. S. Goody, Biochemistry 2011, 50, 8264-8269.
D. M. Rissin, D. R. Walt, Anal. Chim. Acta 2006, 564, 34-39.
D. M. Rissin, D. R. Walt, J. Am. Chem. Soc. 2006, 128, 6286-6287.
Y. Rondelez, G. Tresset, K. V. Tabata, H. Arata, H. Fujita, S. Takeuchi, H. Noji, Nat. Biotechnol. 2005, 23, 361-365.
B. Rotman, Proc. Natl. Acad. Sci. USA 1961, 47, 1981-1991.
D. M. Rissin, D. R. Walt, Nano Lett. 2006, 6, 520-523.
S. Sakakihara, S. Araki, R. Iino, H. Noji, Lab Chip 2010, 10, 3355-3362.
B. K. Duan, P. E. Cavanagh, X. Li, D. R. Walt, Anal. Chem. 2018, 90, 3091-3098.
Y. Jiang, X. Li, D. R. Walt, Angew. Chem. Int. Ed. 2020, 59, 18010-18015;
Angew. Chem. 2020, 132, 18166-18171.
S. Sakamoto, T. Komatsu, R. Watanabe, Y. Zhang, T. Inoue, M. Kawaguchi, H. Nakagawa, T. Ueno, T. Okusaka, K. Honda, H. Noji, Y. Urano, Sci. Adv. 2020, 6, eaay0888.
D. M. Zaher, M. I. El-Gamal, H. A. Omar, S. N. Aljareh, S. A. Al-Shamma, A. J. Ali, S. Zaib, J. Iqbal, Arch. Pharm. 2020, 353, e2000011.
U. Sharma, D. Pal, R. Prasad, Indian J. Clin. Biochem. 2014, 29, 269-278.
K. G. Waymire, J. D. Mahuren, J. M. Jaje, T. R. Guilarte, S. P. Coburn, G. R. MacGregor, Nat. Genet. 1995, 11, 45-51.
X. Li, D. Wang, C. Yang, Q. Zhou, S.-L. Zhuoga, L.-Q. Wang, H.-X. Yao, Q. Zhang, Q. Ai, C.-X. Yang, J.-C. Xu, World J. Pediatr. 2018, 14, 151-159.
A. L. Brichacek, C. M. Brown, Metab. Brain Dis. 2019, 34, 3-19.
N. W. Tietz, C. A. Burtis, P. Duncan, K. Ervin, C. J. Petitclerc, A. D. Rinker, D. Shuey, E. R. Zygowicz, Clin. Chem. 1983, 29, 751-761.
L. Hou, Y. Qin, J. Li, S. Qin, Y. Huang, T. Lin, L. Guo, F. Ye, S. Zhao, Biosens. Bioelectron. 2019, 143, 111605.
H. Liu, M. Li, Y. Xia, X. Ren, ACS Appl. Mater. Interfaces 2017, 9, 120-126.
Y. Hu, X. Geng, L. Zhang, Z. Huang, J. Ge, Z. Li, Sci. Rep. 2017, 7, 1-9.
C. Chen, Q. Yuan, P. Ni, Y. Jiang, Z. Zhao, Y. Lu, Analyst 2018, 143, 3821-3828.
J. L. Ma, B. C. Yin, X. Wu, B. C. Ye, Anal. Chem. 2016, 88, 9219-9225.
G. Li, H. Fu, X. Chen, P. Gong, G. Chen, L. Xia, H. Wang, J. You, Y. Wu, Anal. Chem. 2016, 88, 2720-2726.
T. Il Kim, H. Kim, Y. Choi, Y. Kim, Chem. Commun. 2011, 47, 9825-9827.
C. Chen, J. Zhao, Y. Lu, J. Sun, X. Yang, Anal. Chem. 2018, 90, 3505-3511.
D. B. Craig, E. A. Arriaga, J. C. Y. Wong, H. Lu, N. J. Dovichi, J. Am. Chem. Soc. 1996, 118, 5245-5253.
D. B. Craig, J. C. Y. Wong, N. J. Dovichi, Anal. Chem. 1996, 68, 697-700.
T.-M. Hsin, E. S. Yeung, Angew. Chem. Int. Ed. 2007, 46, 8032-8035;
Angew. Chem. 2007, 119, 8178-8181.
Y. Obayashi, R. Iino, H. Noji, Analyst 2015, 140, 5065-5073.
S. Honda, Y. Minagawa, H. Noji, K. V. Tabata, Anal. Chem. 2021, 93, 5494-5502.
M. J. Mickert, H. H. Gorris, J. Phys. Chem. B 2018, 122, 5809-5819.
C. W. Kan, A. J. Rivnak, T. G. Campbell, T. Piech, D. M. Rissin, M. Mösl, A. Peterça, H.-P. Niederberger, K. A. Minnehan, P. P. Patel, E. P. Ferrell, R. E. Meyer, L. Chang, D. H. Wilson, D. R. Fournier, D. C. Duffy, Lab Chip 2012, 12, 977-985.
D. H. Wilson, D. M. Rissin, C. W. Kan, D. R. Fournier, T. Piech, T. G. Campbell, R. E. Meyer, M. W. Fishburn, C. Cabrera, P. P. Patel, E. Frew, Y. Chen, L. Chang, E. P. Ferrell, V. von Einem, W. McGuigan, M. Reinhardt, H. Sayer, C. Vielsack, D. C. Duffy, J. Lab. Autom. 2015, 21, 533-547.