Plicidentine and the repeated origins of snake venom fangs.
Colubroidea
Ophidia
Serpentes
development
fangs
venom groove
Journal
Proceedings. Biological sciences
ISSN: 1471-2954
Titre abrégé: Proc Biol Sci
Pays: England
ID NLM: 101245157
Informations de publication
Date de publication:
11 08 2021
11 08 2021
Historique:
entrez:
10
8
2021
pubmed:
11
8
2021
medline:
18
9
2021
Statut:
ppublish
Résumé
Snake fangs are an iconic exemplar of a complex adaptation, but despite striking developmental and morphological similarities, they probably evolved independently in several lineages of venomous snakes. How snakes could, uniquely among vertebrates, repeatedly evolve their complex venom delivery apparatus is an intriguing question. Here we shed light on the repeated evolution of snake venom fangs using histology, high-resolution computed tomography (microCT) and biomechanical modelling. Our examination of venomous and non-venomous species reveals that most snakes have dentine infoldings at the bases of their teeth, known as plicidentine, and that in venomous species, one of these infoldings was repurposed to form a longitudinal groove for venom delivery. Like plicidentine, venom grooves originate from infoldings of the developing dental epithelium prior to the formation of the tooth hard tissues. Derivation of the venom groove from a large plicidentine fold that develops early in tooth ontogeny reveals how snake venom fangs could originate repeatedly through the co-option of a pre-existing dental feature even without close association to a venom duct. We also show that, contrary to previous assumptions, dentine infoldings do not improve compression or bending resistance of snake teeth during biting; plicidentine may instead have a role in tooth attachment.
Identifiants
pubmed: 34375553
doi: 10.1098/rspb.2021.1391
pmc: PMC8354744
doi:
Substances chimiques
Snake Venoms
0
Banques de données
figshare
['10.6084/m9.figshare.14747928']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20211391Références
Toxicon. 2007 Jun 1;49(7):975-81
pubmed: 17337027
J Morphol. 2011 Oct;272(10):1170-81
pubmed: 21618268
R Soc Open Sci. 2019 Sep 4;6(9):191099
pubmed: 31598325
J Anat. 2017 Dec;231(6):869-885
pubmed: 28901023
Evolution. 1979 Mar;33(1Part2):433-443
pubmed: 28568181
BMC Evol Biol. 2020 Jul 9;20(1):80
pubmed: 32646372
J Anat. 2020 Apr;236(4):668-687
pubmed: 31903561
J Struct Biol. 2015 Apr;190(1):31-37
pubmed: 25744021
Integr Zool. 2017 Mar;12(2):121-131
pubmed: 27265597
Toxicon. 2013 Jul;69:103-13
pubmed: 23462380
J Morphol. 2002 Jun;252(3):291-7
pubmed: 11948676
Biol Lett. 2017 Aug;13(8):
pubmed: 28768797
J Theor Biol. 2009 Jan 7;256(1):96-103
pubmed: 18834892
Mech Dev. 2008 Sep-Oct;125(9-10):786-96
pubmed: 18620048
PLoS One. 2014 May 07;9(5):e96559
pubmed: 24804680
Mol Cell Proteomics. 2008 Feb;7(2):215-46
pubmed: 17855442
Mol Phylogenet Evol. 2016 Jan;94(Pt B):537-547
pubmed: 26475614
Nature. 2008 Jul 31;454(7204):630-3
pubmed: 18668106
Mol Cell Proteomics. 2010 Nov;9(11):2369-90
pubmed: 20631207
PLoS One. 2016 Sep 07;11(9):e0161070
pubmed: 27603205
J Anat. 2012 Sep;221(3):195-208
pubmed: 22780101
Nature. 2006 Feb 16;439(7078):839-42
pubmed: 16482156
Naturwissenschaften. 2014 Nov;101(11):883-92
pubmed: 25179435