Data-Driven vs Consensus Diagnosis of MCI: Enhanced Sensitivity for Detection of Clinical, Biomarker, and Neuropathologic Outcomes.


Journal

Neurology
ISSN: 1526-632X
Titre abrégé: Neurology
Pays: United States
ID NLM: 0401060

Informations de publication

Date de publication:
28 09 2021
Historique:
received: 05 02 2021
accepted: 01 07 2021
pubmed: 12 8 2021
medline: 30 10 2021
entrez: 11 8 2021
Statut: ppublish

Résumé

Given prior work demonstrating that mild cognitive impairment (MCI) can be empirically differentiated into meaningful cognitive subtypes, we applied actuarial methods to comprehensive neuropsychological data from the University of California San Diego Alzheimer's Disease Research Center (ADRC) in order to identify cognitive subgroups within ADRC participants without dementia and to examine cognitive, biomarker, and neuropathologic trajectories. Cluster analysis was performed on baseline neuropsychological data (n = 738; mean age 71.8). Survival analysis examined progression to dementia (mean follow-up 5.9 years). CSF Alzheimer disease (AD) biomarker status and neuropathologic findings at follow-up were examined in a subset with available data. Five clusters were identified: optimal cognitively normal (CN; n = 130) with above-average cognition, typical CN (n = 204) with average cognition, nonamnestic MCI (naMCI; n = 104), amnestic MCI (aMCI; n = 216), and mixed MCI (mMCI; n = 84). Progression to dementia differed across MCI subtypes (mMCI > aMCI > naMCI), with the mMCI group demonstrating the highest rate of CSF biomarker positivity and AD pathology at autopsy. Actuarial methods classified 29.5% more of the sample with MCI and outperformed consensus diagnoses in capturing those who had abnormal biomarkers, progressed to dementia, or had AD pathology at autopsy. We identified subtypes of MCI and CN with differing cognitive profiles, clinical outcomes, CSF AD biomarkers, and neuropathologic findings over more than 10 years of follow-up. Results demonstrate that actuarial methods produce reliable cognitive phenotypes, with data from a subset suggesting unique biological and neuropathologic signatures. Findings indicate that data-driven algorithms enhance diagnostic sensitivity relative to consensus diagnosis for identifying older adults at risk for cognitive decline.

Sections du résumé

BACKGROUND AND OBJECTIVES
Given prior work demonstrating that mild cognitive impairment (MCI) can be empirically differentiated into meaningful cognitive subtypes, we applied actuarial methods to comprehensive neuropsychological data from the University of California San Diego Alzheimer's Disease Research Center (ADRC) in order to identify cognitive subgroups within ADRC participants without dementia and to examine cognitive, biomarker, and neuropathologic trajectories.
METHODS
Cluster analysis was performed on baseline neuropsychological data (n = 738; mean age 71.8). Survival analysis examined progression to dementia (mean follow-up 5.9 years). CSF Alzheimer disease (AD) biomarker status and neuropathologic findings at follow-up were examined in a subset with available data.
RESULTS
Five clusters were identified: optimal cognitively normal (CN; n = 130) with above-average cognition, typical CN (n = 204) with average cognition, nonamnestic MCI (naMCI; n = 104), amnestic MCI (aMCI; n = 216), and mixed MCI (mMCI; n = 84). Progression to dementia differed across MCI subtypes (mMCI > aMCI > naMCI), with the mMCI group demonstrating the highest rate of CSF biomarker positivity and AD pathology at autopsy. Actuarial methods classified 29.5% more of the sample with MCI and outperformed consensus diagnoses in capturing those who had abnormal biomarkers, progressed to dementia, or had AD pathology at autopsy.
DISCUSSION
We identified subtypes of MCI and CN with differing cognitive profiles, clinical outcomes, CSF AD biomarkers, and neuropathologic findings over more than 10 years of follow-up. Results demonstrate that actuarial methods produce reliable cognitive phenotypes, with data from a subset suggesting unique biological and neuropathologic signatures. Findings indicate that data-driven algorithms enhance diagnostic sensitivity relative to consensus diagnosis for identifying older adults at risk for cognitive decline.

Identifiants

pubmed: 34376506
pii: WNL.0000000000012600
doi: 10.1212/WNL.0000000000012600
pmc: PMC8480404
doi:

Substances chimiques

Amyloid beta-Peptides 0
Biomarkers 0
MAPT protein, human 0
tau Proteins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1288-e1299

Subventions

Organisme : CSRD VA
ID : IK2 CX001415
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG049810
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG062429
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG063782
Pays : United States
Organisme : CSRD VA
ID : IK2 CX001865
Pays : United States
Organisme : NIA NIH HHS
ID : R03 AG070435
Pays : United States

Informations de copyright

© 2021 American Academy of Neurology.

Références

J Alzheimers Dis. 2020;78(1):371-386
pubmed: 32986674
J Infect Dis. 2021 Aug 2;224(3):435-442
pubmed: 33319235
Neurology. 2005 Mar 8;64(5):834-41
pubmed: 15753419
J Int Neuropsychol Soc. 2018 Sep;24(8):842-853
pubmed: 30278855
Neurology. 2010 Jan 19;74(3):201-9
pubmed: 20042704
Alzheimers Dement. 2019 Jul;15(7):878-887
pubmed: 31128864
Int Psychogeriatr. 2012 Sep;24(9):1505-14
pubmed: 22717042
J Int Neuropsychol Soc. 2017 Aug;23(7):564-576
pubmed: 28578726
J Am Geriatr Soc. 2017 Nov;65(11):2425-2430
pubmed: 28898389
Alzheimer Dis Assoc Disord. 2009 Apr-Jun;23(2):91-101
pubmed: 19474567
Neurology. 2016 Nov 15;87(20):2108-2116
pubmed: 27760874
J Intern Med. 2004 Sep;256(3):240-6
pubmed: 15324367
Alzheimers Dement. 2018 Apr;14(4):535-562
pubmed: 29653606
Neurology. 2020 Jul 21;95(3):e256-e267
pubmed: 32591471
Alzheimers Dement. 2015 Apr;11(4):415-24
pubmed: 24857234
Elife. 2017 Mar 23;6:
pubmed: 28440221
Neurology. 1991 Apr;41(4):479-86
pubmed: 2011243
Neurobiol Aging. 1997 Jul-Aug;18(4 Suppl):S71-3
pubmed: 9330989
Epilepsia. 2021 Feb;62(2):460-471
pubmed: 33258159
J Intern Med. 2004 Sep;256(3):183-94
pubmed: 15324362
Alzheimers Dement. 2019 May;15(5):699-708
pubmed: 30737119
J Neurovirol. 2015 Oct;21(5):576-84
pubmed: 26139019
J Int Neuropsychol Soc. 2009 Nov;15(6):906-14
pubmed: 19891820
Neurobiol Aging. 1997 Jul-Aug;18(4 Suppl):S1-2
pubmed: 9330978
Neurobiol Dis. 2018 Sep;117:62-71
pubmed: 29859866
J Int Neuropsychol Soc. 2014 Sep;20(8):836-47
pubmed: 25156329
J Alzheimers Dis. 2016 Mar 29;52(3):849-61
pubmed: 27031472
Alzheimers Dement. 2020 Jan;16(1):144-152
pubmed: 31914216
Alzheimers Res Ther. 2017 Nov 2;9(1):88
pubmed: 29096697
Neurology. 2020 Jun 16;94(24):e2532-e2544
pubmed: 32393648
J Int Neuropsychol Soc. 2017 Jul;23(6):521-527
pubmed: 28487004
Alzheimers Dement. 2012 Jan;8(1):65-73
pubmed: 22047631
Arch Neurol. 1994 Sep;51(9):888-95
pubmed: 8080388
J Psychiatr Res. 2009 Jan;43(4):411-31
pubmed: 18579155
Neurology. 1996 Nov;47(5):1113-24
pubmed: 8909416
Neurology. 1984 Jul;34(7):939-44
pubmed: 6610841
Alzheimers Dement. 2019 Feb;15(2):292-312
pubmed: 30555031
J Int Neuropsychol Soc. 2013 Jul;19(6):635-45
pubmed: 23552486
Alzheimers Dement. 2011 May;7(3):263-9
pubmed: 21514250
J Alzheimers Dis. 2014;42(1):275-89
pubmed: 24844687
J Alzheimers Dis. 2016 Mar 31;52(2):685-91
pubmed: 27031477
Alzheimers Dement (N Y). 2017 Dec 01;4:11-18
pubmed: 29296659
J Int Neuropsychol Soc. 2010 Jan;16(1):84-93
pubmed: 19887015
Alzheimers Dement. 2011 May;7(3):280-92
pubmed: 21514248
Arch Neurol. 2010 Dec;67(12):1506-12
pubmed: 21149812
Neurology. 2013 Oct 8;81(15):1342-9
pubmed: 23997152

Auteurs

Emily C Edmonds (EC)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla. ecedmonds@ucsd.edu.

Denis S Smirnov (DS)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

Kelsey R Thomas (KR)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

Lisa V Graves (LV)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

Katherine J Bangen (KJ)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

Lisa Delano-Wood (L)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

Douglas R Galasko (DR)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

David P Salmon (DP)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

Mark W Bondi (MW)

From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH