Evidence for genetic isolation and local adaptation in the field cricket Gryllus campestris.


Journal

Journal of evolutionary biology
ISSN: 1420-9101
Titre abrégé: J Evol Biol
Pays: Switzerland
ID NLM: 8809954

Informations de publication

Date de publication:
10 2021
Historique:
received: 12 01 2021
accepted: 01 07 2021
pubmed: 12 8 2021
medline: 15 12 2021
entrez: 11 8 2021
Statut: ppublish

Résumé

Understanding how species can thrive in a range of environments is a central challenge for evolutionary ecology. There is strong evidence for local adaptation along large-scale ecological clines in insects. However, potential adaptation among neighbouring populations differing in their environment has been studied much less. We used RAD sequencing to quantify genetic divergence and clustering of ten populations of the field cricket Gryllus campestris in the Cantabrian Mountains of northern Spain, and an outgroup on the inland plain. Our populations were chosen to represent replicate high and low altitude habitats. We identified genetic clusters that include both high and low altitude populations indicating that the two habitat types do not hold ancestrally distinct lineages. Using common-garden rearing experiments to remove environmental effects, we found evidence for differences between high and low altitude populations in physiological and life-history traits. As predicted by the local adaptation hypothesis, crickets with parents from cooler (high altitude) populations recovered from periods of extreme cooling more rapidly than those with parents from warmer (low altitude) populations. Growth rates also differed between offspring from high and low altitude populations. However, contrary to our prediction that crickets from high altitudes would grow faster, the most striking difference was that at high temperatures, growth was fastest in individuals from low altitudes. Our findings reveal that populations a few tens of kilometres apart have independently evolved adaptations to their environment. This suggests that local adaptation in a range of traits may be commonplace even in mobile invertebrates at scales of a small fraction of species' distributions.

Identifiants

pubmed: 34378263
doi: 10.1111/jeb.13911
doi:

Banques de données

Dryad
['10.5061/dryad.j9kd51ccx']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1624-1636

Subventions

Organisme : European Research Council
ID : StG-2011_282163
Pays : International

Informations de copyright

© 2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

Références

Abrams, P. A., Leimar, O., Nylin, S., & Wiklund, C. (1996). The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. The American Naturalist, 147, 381-395.
Acasuso-Rivero, C., Murren, C. J., Schlichting, C. D., & Steiner, U. K. (2019). Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proceedings of the Royal Society of London, Series B, 286, 20190653.
AEMET. (2020). Climatological data (Vol. 2020). http://www.aemet.es/en/serviciosclimaticos/datosclimatologicos
Arnold, B., Corbett-Detig, R. B., Hartl, D., & Bomblies, K. (2013). RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Molecular Ecology, 22, 3179-3190.
Bachmann, J. C., van Rensburg, A. J., Cortazar-Chinarro, M., Laurila, A., & Van Buskirk, J. (2020). Gene flow limits adaptation along steep environmental gradients. The American Naturalist, 195, E67-E86.
Berner, D., Korner, C., & Blanckenhorn, W. U. (2004). Grasshopper populations across 2000 m of altitude: Is there life history adaptation? Ecography, 27, 733-740.
Boonekamp, J., Rodríguez-Muñoz, R., Hopwood, P., Zuidersma, E., Mulder, E., Wilson, A., Verhulst, S., & Tregenza, T. (2020). Telomere length is highly heritable and independent of growth rate manipulated by temperature in field crickets. bioRxiv. https://doi.org/10.1101/2020.05.29.123216
Bradford, M. J., & Roff, D. A. (1995). Genetic and phenotypic sources of life history variation along a cline in voltinism in the cricket Allonemobius socius. Oecologia, 103, 319-326.
Bretman, A., Rodríguez-Muñoz, R., Walling, C., Slate, J., & Tregenza, T. (2011). Fine-scale population structure, inbreeding risk and avoidance in a wild insect population. Molecular Ecology, 20, 3045-3055.
Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958-968.
datosclima.es. (2020) Weather station reports. https://datosclima.es.Aemethistorico.Estaciones.php.pp
Demont, M., & Blanckenhorn, W. U. (2008). Genetic differentiation in diapause response along a latitudinal cline in European yellow dung fly populations. Ecological Entomology, 33, 197-201.
Dmitriew, C. M. (2011). The evolution of growth trajectories: What limits growth rate? Biological Reviews, 86, 97-116.
Eaton, D. A. R. (2014). PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30, 1844-1849.
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Longman.
Findsen, A., Pedersen, T. H., Petersen, A. G., Nielsen, O. B., & Overgaard, J. (2014). Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria. The Journal of Experimental Biology, 217, 1297.
Franks, S. J., & Hoffmann, A. A. (2012). Genetics of climate change adaptation. Annual Review of Genetics, 46, 185-208.
Garcia-Gonzalez, F., Simmons, L. W., Tomkins, J. L., Kotiaho, J. S., & Evans, J. P. (2012). Comparing evolvabilities: Common errors surrounding the calculation and use of coefficients of additive genetic variation. Evolution, 66, 2341-2349.
Gerken, A. R., Mackay, T. F. C., & Morgan, T. J. (2016). Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. Journal of Thermal Biology, 59, 77-85.
Gibert, P., Moreteau, B., Pétavy, G., Karan, D., & David, J. (2001). Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution, 55, 1063-1068.
Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews, 80, 489-513.
Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics, 130, 195-204.
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.
Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming. Proceedings of the National Academy of Sciences USA, 106, 3835-3840.
Keller, I., Alexander, J. M., Holderegger, R., & Edwards, P. J. (2013). Widespread phenotypic and genetic divergence along altitudinal gradients in animals. Journal of Evolutionary Biology, 26, 2527-2543.
Kelly, M., Sanford, E., & Grosberg, R. (2011). Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proceedings of the Royal Society B: Biological Sciences, 279, 349-356.
Köhler, G. (1983). Investigations on the hatching polymorphism and its intrapopular consequences in Chorthippus parallelus (Zetterstedt) (Orthoptera: Acrididae). Zoologische Jahrbücher, 110, 31-44.
Laiolo, P., & Obeso, J. R. (2015). Plastic responses to temperature versus local adaptation at the cold extreme of the climate gradient. Evolutionary Biology, 42, 473-482.
Lawson, D. J., van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nature Communications, 9, 3258.
Leffler, E. M., Bullaughey, K., Matute, D. R., Meyer, W. K., Ségurel, L., Venkat, A., Andolfatto, P., & Przeworski, M. (2012). Revisiting an old riddle: What determines genetic diversity levels within species? PLOS Biology, 10, e1001388.
Leimu, R., & Fischer, M. (2008). A meta-analysis of local adaptation in plants. PLoS One, 3, e4010.
Lozier, J. D. (2014). Revisiting comparisons of genetic diversity in stable and declining species: Assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Molecular Ecology, 23, 788-801.
Makai, G., Rodríguez-Muñoz, R., Boonekamp Jelle, J., Hopwood, P. E., & Tregenza, T. (2020). Males and females differ in how their behaviour changes with age in wild crickets. Animal Behaviour, 164, 1-8.
Marshall, J. L., Huestis, D. L., Hiromasa, Y., Wheeler, S., Oppert, C., Marshall, S. A., Tomich, J. M., & Oppert, B. (2009). Identification, RNAi knockdown, and functional analysis of an ejaculate protein that mediates a postmating, prezygotic phenotype in a cricket. PLoS One, 4, e7537.
Masaki, S. (1963). Adaptation to local climatic conditions in the Emma field cricket (Orthoptera: Gryllidae). Kontyu, 31, 249-260.
Masaki, S. (1967). Geographic variation and climatic adaptation in a field cricket (Orthoptera - Gryllidae). Evolution, 21, 725.
Matsuda, N., & Numata, H. (2019). Altitudinal variation in life-history traits in the lawn ground cricket, Polionemobius mikado. Entomological Science, 22, 198-204.
May, M. L. (1979). Insect thermoregulation. Annual Review of Entomology, 24, 313-349.
Meadows, L. (2013). Cricket trapping: the flipper trap. https://crickettrapping.wordpress.com/
Moore, M. P., Whiteman, H. H., & Martin, R. A. (2019). A mother’s legacy: The strength of maternal effects in animal populations. Ecology Letters, 22, 1620-1628.
Nadeau, J. H. (2009). Transgenerational genetic effects on phenotypic variation and disease risk. Human Molecular Genetics, 18, R202-R210.
Niemelä, P. T., & Dingemanse, N. J. (2017). Individual versus pseudo-repeatability in behaviour: Lessons from translocation experiments in a wild insect. Journal of Animal Ecology, 86(5), 1033-1043.
Nystrand, M., Dowling, D. K., & Simmons, L. W. (2011). Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus Oceanicus. BMC Evolutionary Biology, 11, 222. https://doi.org/10.1186/1471-2148-11-222
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., & Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5-6.
Ørskov, C. K., Tregenza, T., & Overgaard, J. (2019). Using radiotelemetry to study behavioural thermoregulation in insects under field conditions. Methods in Ecology and Evolution, 10, 1773-1782.
Ottenheim, M. M., Henseler, A., & Brakefield, P. M. (2008). Geographic variation in plasticity in Eristalis arbustorum. Biological Journal of the Linnean Society, 65, 215-229.
Pascoal, S., Risse, J. E., Zhang, X., Blaxter, M., Cezard, T., Challis, R. J., Gharbi, K., Hunt, J., Kumar, S., Langan, E., Liu, X., Rayner, J. G., Ritchie, M. G., Snoek, B. L., Trivedi, U., & Bailey, N. W. (2020). Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evolution Letters, 4, 19-33.
Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J.-L. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253.
Raj, A., Stephens, M., & Pritchard, J. K. (2014). Faststructure: Variational inference of population structure in large snp data sets. Genetics, 197, 573-589.
Rodríguez-Muñoz, R., Boonekamp, J. J., Liu, X. P., Skicko, I., Haugland Pedersen, S., Fisher, D. N., Hopwood, P., & Tregenza, T. (2019). Comparing individual and population measures of senescence across 10 years in a wild insect population. Evolution, 73, 293-302.
Rodríguez-Muñoz, R., Bretman, A., Slate, J., Walling, C. A., & Tregenza, T. (2010). Natural and sexual selection in a wild insect population. Science, 328, 1269-1272.
Rodríguez-Muñoz, R., Hopwood, P., Fisher, D., Skicko, I., Tucker, R., Woodcock, K., Slate, J., Walling, C., & Tregenza, T. (2019). Older males attract more females but get fewer matings in a wild field cricket. Animal Behaviour, 153, 1-14.
Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., Chiari, Y., Dernat, R., Duret, L., Faivre, N., Loire, E., Lourenco, J. M., Nabholz, B., Roux, C., Tsagkogeorga, G., Weber, A. A. T., Weinert, L. A., Belkhir, K., Bierne, N., … Galtier, N. (2014). Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature, 515, 261-263.
Savolainen, O., Pyhajarvi, T., & Knurr, T. (2007). Gene flow and local adaptation in trees. Annual Review of Ecology Evolution and Systematics, 38, 595-619.
Schilthuizen, M., & Kellermann, V. (2014). Contemporary climate change and terrestrial invertebrates: Evolutionary versus plastic changes. Evolutionary Applications, 7, 56-67.
Séré, M., Thévenon, S., Belem, A. M. G., & De Meeûs, T. (2017). Comparison of different genetic distances to test isolation by distance between populations. Heredity, 119, 55-63.
Settepani, V., Schou, M. F., Greve, M., Grinsted, L., Bechsgaard, J., & Bilde, T. (2017). Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Molecular Ecology, 26, 4197-4210.
Shimizu, T., & Masaki, S. (1997). Geographical and species variation in circadian rhythm parameters in nemobiine crickets. Physiological Entomology, 22, 83-93.
Sturm, R. (2016). Relationship between body size and reproductive capacity in females of the black field cricket (Orthoptera, Gryllidae). Linzer Biologische Beiträge 48.
Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105, 437-460.
Tal, O., Kisdi, E., & Jablonka, E. (2010). Epigenetic contribution to covariance between relatives. Genetics, 184, 1037.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
Teets, N. M., & Hahn, D. A. (2018). Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. Journal of Evolutionary Biology, 31, 543-555.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., & Hannah, L. (2004). Extinction risk from climate change. Nature, 427, 145.
Tonione, M. A., Cho, S. M., Richmond, G., Irian, C., & Tsutsui, N. D. (2020). Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis. Ecology and Evolution, 10, 4749-4761.
Via, S., & Lande, R. (1985). Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution, 39, 505-522.
Williams, G. C. (1966). Adaptation and natural selection. Princeton University Press.
Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., Kruuk, L. E. B., & Nussey, D. H. (2010). An ecologist’s guide to the animal model. Journal of Animal Ecology, 79, 13-26.
Zuk, M., Rotenberry, J. T., & Tinghitella, R. M. (2006). Silent night: Adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biology Letters, 2, 521-524.

Auteurs

Tom Tregenza (T)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Rolando Rodríguez-Muñoz (R)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Jelle J Boonekamp (JJ)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.
Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.

Paul E Hopwood (PE)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Jesper Givskov Sørensen (JG)

Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark.

Jesper Bechsgaard (J)

Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark.

Virginia Settepani (V)

Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark.

Vinayaka Hegde (V)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Callum Waldie (C)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Emma May (E)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Caleb Peters (C)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Zinnia Pennington (Z)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Paola Leone (P)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Emil M Munk (EM)

Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark.

Samuel T E Greenrod (STE)

Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark.

Joe Gosling (J)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Harry Coles (H)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Rhodri Gruffydd (R)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Loris Capria (L)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Laura Potter (L)

Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.

Trine Bilde (T)

Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH