Acute toxicity of the insecticide abamectin and the fungicide difenoconazole (individually and in mixture) to the tropical stingless bee Melipona scutellaris.


Journal

Ecotoxicology (London, England)
ISSN: 1573-3017
Titre abrégé: Ecotoxicology
Pays: United States
ID NLM: 9885956

Informations de publication

Date de publication:
Nov 2021
Historique:
accepted: 13 07 2021
pubmed: 12 8 2021
medline: 3 11 2021
entrez: 11 8 2021
Statut: ppublish

Résumé

Stingless bees have been recognized as essential plant pollinators and producers of various natural products in neotropical areas. Research into the potential risks of pesticides they may be exposed to in agricultural fields, however, remains meagre. Especially the toxicity of pesticide mixtures likely to occur under real-world conditions and that are likely to exert synergetic effects has been poorly studied. The aim of the present study was therefore to evaluate the single and mixture acute contact and oral toxicity of commercial products containing the insecticide abamectin and the fungicide difenoconazole in laboratory bioassays with the Brazilian native stingless bee Melipona scutellaris. In addition, a comparison of the insecticide sensitivity of stingless bees relative to the honeybee Apis mellifera was made based on previously published toxicity data. Except for oral exposure to abamectin, M. scutellaris appeared to be more sensitive that A. mellifera in the single compound toxicity tests. A difenoconazole concentration at the NOEC (no observed effect concentration) level indicated a synergetic toxic interaction with abamectin. A sensitivity comparison based on published toxicity data for A. mellifera and stingless bees indicated several insecticidal modes of action having a high relative sensitivity to stingless bees that need especial consideration in future studies. The research findings highlight the need for testing native bee species and environmentally relevant pesticide mixtures in risk assessments to avoid underestimation of potential risks to bee populations and the subsequent loss of pollination ecosystem services.

Identifiants

pubmed: 34379243
doi: 10.1007/s10646-021-02458-7
pii: 10.1007/s10646-021-02458-7
doi:

Substances chimiques

Dioxolanes 0
Fungicides, Industrial 0
Insecticides 0
Triazoles 0
abamectin 5U8924T11H
Ivermectin 70288-86-7
difenoconazole D9612XCH4P

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1872-1879

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Almasri H, Tavares DA, Pioz M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP (2020) Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol Environ Saf 203:111013. https://doi.org/10.1016/j.ecoenv.2020.111013
doi: 10.1016/j.ecoenv.2020.111013
Araújo RS, Bernardes RC, Martins GF (2021) A mixture containing the herbicides Mesotrione and Atrazine imposes toxicological risks on workers of Partamona helleri. Sci Total Environ 763:142980. https://doi.org/10.1016/j.scitotenv.2020.142980
doi: 10.1016/j.scitotenv.2020.142980
Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–334. https://doi.org/10.1007/s10646-014-1190-1
doi: 10.1007/s10646-014-1190-1
Barbosa WF, Smagghe G, Guedes RNC (2015) Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag Sci 71:1049–1053. https://doi.org/10.1002/ps.4025
doi: 10.1002/ps.4025
Bernardes RC, Barbosa WF, Martins GF, Lima MAP (2018) The reduced-risk insecticide azadirachtin poses a toxicological hazard to stingless bee Partamona helleri (Friese, 1900) queens. Chemosphere 201:550–556. https://doi.org/10.1016/j.chemosphere.2018.03.030
doi: 10.1016/j.chemosphere.2018.03.030
Cham KO, Nocelli RCF, Borges LO, Viana-Silva FEC, Tonelli CAM, Malaspina O, Menezes C, Rosa-Fontana AS, Blochtein B, Freitas BM, Pires CSS, Oliveira FF, Contrera FAL, Torezani KRS, Ribeiro MF, Siqueira MAL, Rocha MCLSA (2019) Pesticide exposure assessment paradigm for stingless bees. Environ Entomol 48:36–48. https://doi.org/10.1093/ee/nvy137
doi: 10.1093/ee/nvy137
de Figueirêdo LP, Athayde DB, Daam MA, van Gestel CAM, Guerra GS, Duarte-Neto PJ, Espíndola ELG (2020) Impact of temperature on the toxicity of Kraft 36 EC® (a.s. abamectin) and Score 250 EC® (a.s. difenoconazole) to soil organisms under realistic environmental exposure scenarios. Ecotoxicol Environ Saf 194:110446. https://doi.org/10.1016/j.ecoenv.2020.110446
doi: 10.1016/j.ecoenv.2020.110446
de Morais CR, Travençolo BAN, Carvalho SM, Beletti ME, Santos VSV, Campos CF, Júnior EOC, Pereira BB, Naves MPC, de Rezende AAA, Spanó MA, Vieira CU, Bonetti AM (2018) Ecotoxicological effects of the insecticide fipronil in Brazilian native stingless bees Melipona scutellaris (Apidae: Meliponini). Chemosphere 206:632–642. https://doi.org/10.1016/j.chemosphere.2018.04.153
doi: 10.1016/j.chemosphere.2018.04.153
de Oliveira RC, Queiroz SCN, da Luz CFP, Porto RS, Rath S (2016) Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere 163:525–534. https://doi.org/10.1016/j.chemosphere.2016.08.022
doi: 10.1016/j.chemosphere.2016.08.022
Del Sarto MCL, Oliveira EE, Guedes RNC, Campos LAO (2014) Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honeybee Apis mellifera. Apidologie 45:626–636. https://doi.org/10.1007/s13592-014-0281-6
doi: 10.1007/s13592-014-0281-6
Devillers J, Devillers H (2020) Lethal and sublethal effects of pyriproxyfen on Apis and non-Apis bees. Toxics 8:104. https://doi.org/10.3390/toxics8040104
doi: 10.3390/toxics8040104
do Prado FSR, dos Santos DM, Oliveira TMA, Burgarelli JAM, Castele JB, Vieira EM (2020) Determination and uptake of abamectin and difenoconazole in the stingless bee Melipona scutellaris Latreille, 1811 via oral and topic acute exposure. Environ. Pollut. 265:114313. https://doi.org/10.1016/j.envpol.2020.114313
doi: 10.1016/j.envpol.2020.114313
Dorigo AS, Rosa-Fontana AS, Camargo IF, Nocelli RCF, Malaspin O (2018) Biological data of stingless bees with potential application in pesticide risk assessments. Sociobiology 65:777–779
doi: 10.13102/sociobiology.v65i4.2878
Dorneles AL, Souza Rosa A, Blochtein B (2017) Toxicity of organophosphorus pesticides to the stingless bees Scaptotrigona bipunctata and Tetragonisca fiebrigi. Apidologie 48:612–620. https://doi.org/10.1007/s13592-017-0502-x
doi: 10.1007/s13592-017-0502-x
EC (2006a) Draft Assessment Report (DAR) – Public version – Initial risk assessment provided by the Rapporteur Member State Sweden for the existing active substance difenoconazole of the third stage (Part A) of the review programme referred to in Article 8(2) of Council Directive 91/414/EEC
EC (2006b) Draft Assessment Report (DAR) – Public version – Initial risk assessment provided by the Rapporteur Member State the Netherlands for the existing active substance abamectin of the third stage (Part A) of the review programme referred to in Article 8(2) of Council Directive 91/414/EEC
EFSA (2013) EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11:3295
EFSA (2020) Peer review of the pesticide risk assessment of the active substance abamectin. EFSA J 18:e06227. https://doi.org/10.2903/j.efsa.2020.6227
doi: 10.2903/j.efsa.2020.6227
FAO (2014) Pollinator safety in agriculture. Food and agriculture organization of the United nations. http://www.fao.org/3/a-i3800e.pdf
FRAC (2020) FRAC Code List 2020: Fungal control agents sorted by cross resistance pattern and mode of action (including FRAC Code numbering). Fungicide Resistance Action Committee (FRAC). Available via: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2020-final.pdf?sfvrsn=8301499a_2
Gregorc A, Alburaki M, Rinderer N, Sampson B, Knight PR, Karim S, Adamczyk J (2018) Effects of coumaphos and imidacloprid on honeybee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci Rep 8:15003. https://doi.org/10.1038/s41598-018-33348-4
doi: 10.1038/s41598-018-33348-4
Grüter C (2020) Stingless bees—Their behaviour, ecology and evolution. Springer, Switzerland
doi: 10.1007/978-3-030-60090-7
Johnson RM, Dahlgren L, Siegfried BD, Ellis MD (2013) Acaricide, fungicide and drug interactions in honeybees (Apis mellifera). PLoS ONE 8:e54092. https://doi.org/10.1371/journal.pone.0054092
doi: 10.1371/journal.pone.0054092
Ladurner E, Bosch J, Kemp WP, Maini S (2005) Assessing delayed and acute toxicity of five formulated fungicides to Osmia lignaria Say and Apis mellifera. Apidologie 36:449–460. https://doi.org/10.1051/apido:2005032
doi: 10.1051/apido:2005032
Lima MAP, Martins GF, Oliveira EE, Guedes RNC (2016) Agrochemical‐induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A 202:733–747. https://doi.org/10.1007/s00359-016-1110-3
doi: 10.1007/s00359-016-1110-3
MAPA – Ministério da Agricultura, Pecuária e Abastecimento 2021. Agrofit, Sistemas de Agrotóxicos Fitossanitários. Freely accessible via: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (Accessed 20 February 2021)
Marletto F, Patetta A, Manino A (2003) Laboratory assessment of pesticide toxicity to bumblebees. Bull Insectology 56:155–158
Moreira RA, de Araujo GS, Silva ARRG, Daam AM, Rocha O, Soares AMVM, Loureiro S (2020) Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: a multiple endpoint approach. Ecotoxicology 29:1486–1499
doi: 10.1007/s10646-020-02218-z
Moreira DR, Gigliolli AAS, Falco JRP, Julio AHF, Volnistem EA, Chagas F, Toledo VAA, Ruvolo-Takasusuki MCC (2018) Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata lepeletier, 1836 (Hymenoptera: Apidae). Environ Toxicol 33:463–475. https://doi.org/10.1002/tox.22533
doi: 10.1002/tox.22533
Moreno SC, Silvério FO, Lopes MC, Ramos RS, Alvarenga ES, Picanço MC (2017) Toxicity of new pyrethroid in pest insects Asciamonuste and Diaphania hyalinata, predator Solenopsis saevissima and stingless bee Tetragonisca angustula. J Environ Sci Health B 52:237–243. https://doi.org/10.1080/03601234.2016.1270681
doi: 10.1080/03601234.2016.1270681
Novelli A, Vieira BH, Braun AS, Mendes LB, Daam MA, Espíndola ELG (2016) Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles. Chemosphere 144:1408–1414. https://doi.org/10.1016/j.chemosphere.2015.10.004
doi: 10.1016/j.chemosphere.2015.10.004
OECD (1998a) Honeybees, acute contact toxicity test. Guideline for Testing Chemicals No. 214. Organisation for Economic Co-operation and Development, Paris, France
doi: 10.1787/9789264070189-en
OECD (1998b) Honeybees, acute oral toxicity test. Guideline for Testing Chemicals No. 213. Organisation for Economic Co-operation and Development, Paris, France
doi: 10.1787/9789264070165-en
OECD (2017a) Bumblebee, acute contact toxicity test. Guideline for Testing Chemicals No. 246. Organisation for Economic Co-operation and Development, Paris, France
doi: 10.1787/9789264284104-en
OECD (2017b) Bumblebee, acute oral toxicity test. Guideline for Testing Chemicals No. 247. Organisation for Economic Co-operation and Development, Paris, France
doi: 10.1787/9789264284128-en
Piovesan B, Padilha AC, Morais MC, Botton M, Grützmacher AD, Zotti MJ (2020) Effects of insecticides used in strawberries on stingless bees Melipona quadrifasciata and Tetragonisca fiebrigi (Hymenoptera: Apidae). Environ Sci Pollut Res 27:42472–42480. https://doi.org/10.1007/s11356-020-10191-7
doi: 10.1007/s11356-020-10191-7
Roessink I, Van der Steen JJM, Kasina M, Gikungu M, Nocelli RCF (2011) Is the European honeybee (Apis mellifera) a good representative for other pollinator species? SETAC Europe 21
Sánchez-Bayo F, Goka K (2014) Pesticide residues and bees – A risk assessment. PLoS ONE 9:e94482. https://doi.org/10.1371/journal.pone.0094482
doi: 10.1371/journal.pone.0094482
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020
doi: 10.1016/j.biocon.2019.01.020
Seide VE, Bernardes RC, Pereira EJG, Lima MAP (2018) Glyphosate is lethal and Cry toxins alter the development of the stingless bee Melipona quadrifasciata. Environ Pollut 243:1854–1860. https://doi.org/10.1016/j.envpol.2018.10.020
doi: 10.1016/j.envpol.2018.10.020
Sgolastra F, Medrzycki P, Bortolotti L, Maini S, Porrini C, Simon-Delso N, Bosch J (2020) Bees and pesticide regulation: Lessons from the neonicotinoid experience. Biol Conserv 241:108356. https://doi.org/10.1016/j.biocon.2019.108356
doi: 10.1016/j.biocon.2019.108356
Statsoft (2004) Statistica version 07. Freely accessible via www.statsoft.com
Straub L, Williams GR, Vidondo B, Khongphinitbunjong K, Retschnig G, Schneeberger A, Chantawannakul P, Dietemann V, Neumann P (2019) Neonicotinoids and ectoparasitic mites synergistically impact honeybees. Sci Rep 9:8159. https://doi.org/10.1038/s41598-019-44207-1
doi: 10.1038/s41598-019-44207-1
Systat (2008) Systat Software, Incorporation SigmaPlot for Windows Version 11.0
Tomé HVV, Ramos GS, Araújo MF, Santana WC, Santos GR, Guedes RNC, Maciel CD, Newland PL, Oliveira EE (2017) Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees. R Soc open sci 4:160866. 10.1098%2Frsos.160866
doi: 10.1098/rsos.160866
Van Vlaardingen P, Traas TP, Wintersen AM, Aldenberg T (2004) ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. RIVM report no. 601501028/2004, Bilthoven, The Netherlands
Vandame R, Belzunces LP (1998) Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neurosci Lett 251:57–60. https://doi.org/10.1016/S0304-3940(98)00494-7
doi: 10.1016/S0304-3940(98)00494-7
Viana-Silva F, Pires C, Torezani K, Borges L, Cham K, Dias C, Teixeira I, Tonelli C, Belchior C, Marcondes C, Nocelli R, Malaspina O, Cione A, Shiwa A, Ferraz A (2018) 1.12 Selection matrix for Brazilian bee species to risk assessment of pesticides. Julius-Kühn-Archiv 462:56–61
Wogram J, Liess M (2001) Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of Daphnia magna. Bull Environ Contam Toxicol 67:360–367. https://doi.org/10.1007/s001280133
doi: 10.1007/s001280133

Auteurs

Janete Brigante (J)

NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.

Joyce Oliveira Costa (JO)

NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.

Evaldo L G Espíndola (ELG)

NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.

Michiel A Daam (MA)

CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal. m.daam@fct.unl.pt.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH