Effect of spinal cord injury on neural encoding of spontaneous postural perturbations in the hindlimb sensorimotor cortex.


Journal

Journal of neurophysiology
ISSN: 1522-1598
Titre abrégé: J Neurophysiol
Pays: United States
ID NLM: 0375404

Informations de publication

Date de publication:
01 11 2021
Historique:
pubmed: 12 8 2021
medline: 12 2 2022
entrez: 11 8 2021
Statut: ppublish

Résumé

Supraspinal signals play a significant role in compensatory responses to postural perturbations. Although the cortex is not necessary for basic postural tasks in intact animals, its role in responding to unexpected postural perturbations after spinal cord injury (SCI) has not been studied. To better understand how SCI impacts cortical encoding of postural perturbations, the activity of single neurons in the hindlimb sensorimotor cortex (HLSMC) was recorded in the rat during unexpected tilts before and after a complete midthoracic spinal transection. In a subset of animals, limb ground reaction forces were also collected. HLSMC activity was strongly modulated in response to different tilt profiles. As the velocity of the tilt increased, more information was conveyed by the HLSMC neurons about the perturbation due to increases in both the number of recruited neurons and the magnitude of their responses. SCI led to attenuated and delayed hindlimb ground reaction forces. However, HLSMC neurons remained responsive to tilts after injury but with increased latencies and decreased tuning to slower tilts. Information conveyed by cortical neurons about the tilts was therefore reduced after SCI, requiring more cells to convey the same amount of information as before the transection. Given that reorganization of the hindlimb sensorimotor cortex in response to therapy after complete midthoracic SCI is necessary for behavioral recovery, this sustained encoding of information after SCI could be a substrate for the reorganization that uses sensory information from above the lesion to control trunk muscles that permit weight-supported stepping and postural control.

Identifiants

pubmed: 34379540
doi: 10.1152/jn.00727.2020
pmc: PMC8782649
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1555-1567

Subventions

Organisme : NCATS NIH HHS
ID : UL1 TR001860
Pays : United States
Organisme : HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : R01NS096971

Références

J Neurosci Methods. 2018 Aug 1;306:103-114
pubmed: 29859878
Exp Neurol. 2016 May;279:1-12
pubmed: 26826448
J Physiol. 2001 May 15;533(Pt 1):15-22
pubmed: 11351008
Eur J Neurosci. 2002 Aug;16(3):467-76
pubmed: 12193190
J Neurophysiol. 2005 Dec;94(6):3677-90
pubmed: 16049143
J Physiol. 2008 Jan 1;586(1):247-63
pubmed: 17974591
J Neurophysiol. 2013 Sep;110(6):1301-10
pubmed: 23803327
Elife. 2018 Mar 13;7:
pubmed: 29533186
J Neurosci. 1985 May;5(5):1276-82
pubmed: 3998821
Brain Res. 1990 Apr 23;514(1):55-67
pubmed: 2357531
Elife. 2017 Jun 29;6:
pubmed: 28661400
Front Physiol. 2018 Dec 06;9:1746
pubmed: 30574093
J Neurophysiol. 2010 Feb;103(2):1080-92
pubmed: 20018835
J Neurophysiol. 2010 Jun;103(6):3266-73
pubmed: 20089811
Exp Neurol. 2013 Mar;241:84-94
pubmed: 23262119
Lancet. 2011 Jun 4;377(9781):1938-47
pubmed: 21601270
J Appl Physiol (1985). 2006 Dec;101(6):1776-82
pubmed: 16959909
PLoS One. 2012;7(12):e52173
pubmed: 23300606
Prog Neurobiol. 2018 Jan;160:64-81
pubmed: 29102670
J Neurophysiol. 1996 Aug;76(2):849-66
pubmed: 8871204
J Neurophysiol. 2000 Mar;83(3):1158-66
pubmed: 10712446
J Neurophysiol. 1999 Apr;81(4):1513-30
pubmed: 10200188
J Neurophysiol. 2011 Sep;106(3):1341-54
pubmed: 21653706
J Neurotrauma. 2016 Sep 15;33(18):1709-23
pubmed: 26792233
Brain Res Brain Res Rev. 2002 Oct;40(1-3):257-66
pubmed: 12589924
Exp Neurol. 2020 May;327:113246
pubmed: 32057795
J Physiol. 2006 May 15;573(Pt 1):211-24
pubmed: 16527856
Front Hum Neurosci. 2018 Feb 27;12:68
pubmed: 29535618
Brain Res Brain Res Rev. 2002 Oct;40(1-3):274-91
pubmed: 12589926
Behav Brain Res. 2008 Jun 26;190(1):124-34
pubmed: 18359100
J Neurophysiol. 1999 Dec;82(6):3056-65
pubmed: 10601441
J Neurophysiol. 2009 Apr;101(4):1932-40
pubmed: 19164112
J Neurosci. 2003 Aug 27;23(21):7844-53
pubmed: 12944514
J Neurophysiol. 1994 May;71(5):1981-5
pubmed: 8064361
Br J Pharmacol. 2010 Aug;160(7):1577-9
pubmed: 20649561
Acta Otolaryngol. 1983 Mar-Apr;95(3-4):257-62
pubmed: 6837280
Clin Neurophysiol. 2008 Jun;119(6):1431-42
pubmed: 18397840
Exp Brain Res. 1985;57(2):348-54
pubmed: 3972035
J Comp Neurol. 2004 Oct 18;478(3):306-22
pubmed: 15368533
J Neurophysiol. 1989 Sep;62(3):680-93
pubmed: 2769353
J Neurophysiol. 1999 Dec;82(6):3066-81
pubmed: 10601442
Front Neurosci. 2016 Dec 27;10:584
pubmed: 28082858
J Physiol. 1971 Nov;218(3):551-71
pubmed: 4109115
Front Syst Neurosci. 2012 Sep 26;6:67
pubmed: 23055956
Adv Neurol. 1997;72:227-32
pubmed: 8993701
J Neurophysiol. 2005 Apr;93(4):1831-44
pubmed: 15525811
J Neurophysiol. 2011 Nov;106(5):2662-74
pubmed: 21865438
J Neurotrauma. 2018 Nov 1;35(21):2540-2553
pubmed: 29786465
Prog Brain Res. 1999;123:349-65
pubmed: 10635730
J Neurophysiol. 2006 Oct;96(4):1699-710
pubmed: 16823028
Neurosci Lett. 2005 Aug 5;383(3):339-44
pubmed: 15878636
J Neurophysiol. 1998 Sep;80(3):1245-67
pubmed: 9744936
Cereb Cortex. 1994 Nov-Dec;4(6):590-600
pubmed: 7703686
Neuroscience. 2008 Oct 28;156(4):1083-92
pubmed: 18775766
J Exp Psychol. 1946 Dec;36(6):503-11
pubmed: 20279295
J Neurosci Methods. 2004 May 30;135(1-2):107-20
pubmed: 15020095
Exp Brain Res. 1974;20(3):255-72
pubmed: 4372079
J Neurophysiol. 1999 Nov;82(5):2676-92
pubmed: 10561437
Science. 2012 Jun 1;336(6085):1182-5
pubmed: 22654062
J Neurophysiol. 1999 Jul;82(1):359-69
pubmed: 10400964
J Neurosci. 2008 Jul 30;28(31):7774-80
pubmed: 18667609
Annu Rev Neurosci. 2004;27:145-67
pubmed: 15217329
J Neurophysiol. 2003 Dec;90(6):3783-93
pubmed: 12930819
J Physiol. 2012 Apr 1;590(7):1721-36
pubmed: 22351637
Cereb Cortex. 2021 Oct 1;31(11):5165-5187
pubmed: 34165153
Brain Res. 1987 Jun 16;413(2):360-4
pubmed: 3607486
J Neurosci. 2009 Sep 30;29(39):12210-9
pubmed: 19793979

Auteurs

Jaimie B Dougherty (JB)

School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania.

Gregory D Disse (GD)

Department of Biomedical Engineering, University of California at Davis, Davis, California.

Nathaniel R Bridges (NR)

Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio.

Karen A Moxon (KA)

School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania.
Department of Biomedical Engineering, University of California at Davis, Davis, California.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH