Global variation in the fraction of leaf nitrogen allocated to photosynthesis.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 08 2021
11 08 2021
Historique:
received:
14
01
2021
accepted:
22
07
2021
entrez:
12
8
2021
pubmed:
13
8
2021
medline:
24
8
2021
Statut:
epublish
Résumé
Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential.
Identifiants
pubmed: 34381045
doi: 10.1038/s41467-021-25163-9
pii: 10.1038/s41467-021-25163-9
pmc: PMC8358060
doi:
Substances chimiques
Soil
0
Chlorophyll
1406-65-1
Phosphorus
27YLU75U4W
Ribulose-Bisphosphate Carboxylase
EC 4.1.1.39
Nitrogen
N762921K75
Banques de données
figshare
['10.6084/m9.figshare.11559852']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
4866Subventions
Organisme : Medical Research Council
ID : MR/T01993X/1
Pays : United Kingdom
Informations de copyright
© 2021. The Author(s).
Références
Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology. (Springer New York, 2008). https://doi.org/10.1007/978-0-387-78341-3 .
Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).
pubmed: 23812345
pmcid: 3729760
doi: 10.1104/pp.113.219006
Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate [Formula: see text] on global gross primary production. N. Phytol. 215, 1370–1386 (2017).
doi: 10.1111/nph.14623
Rogers, A. The use and misuse of [Formula: see text] in earth system models. Photosynth. Res. 119, 15–29 (2014).
pubmed: 23564478
doi: 10.1007/s11120-013-9818-1
Bar-On, Y. M. & Milo, R. The global mass and average rate of rubisco. Proc. Natl Acad. Sci. USA 116, 4738–4743 (2019).
pubmed: 30782794
pmcid: 6410859
doi: 10.1073/pnas.1816654116
Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Chang. Biol. 15, 976–991 (2009).
doi: 10.1111/j.1365-2486.2008.01744.x
Friend, A. D. Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning. Plant. Cell Environ. 14, 895–905 (1991).
doi: 10.1111/j.1365-3040.1991.tb00958.x
Niinemets, Ü. & Tenhunen, J. D. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20, 845–866 (1997).
doi: 10.1046/j.1365-3040.1997.d01-133.x
Evans, J. Photosynthesis and nitrogen relationships in leaves of C
pubmed: 28311896
doi: 10.1007/BF00377192
Onoda, Y. et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. N. Phytol. 214, 1447–1463 (2017).
doi: 10.1111/nph.14496
Hikosaka, K. & Shigeno, A. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. 443–451 https://doi.org/10.1007/s00442-009-1315-z (2009).
Makino, A., Mae, T. & Ohira, K. Photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Quantitative analysis by carboxylation/oxygenation and regeneration of ribulose 1,5-bisphosphate. Planta 166, 414–420 (1985).
pubmed: 24241526
doi: 10.1007/BF00401181
Oleson, K. W. et al. Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR/TN-503+STR (2013).
Ali, A. A. et al. Global-scale environmental control of plant photosynthetic capacity. Ecol. Appl. 25, 2349–2365 (2015).
pubmed: 26910960
doi: 10.1890/14-2111.1
Walker, A. P. et al. The relationship of leaf photosynthetic traits—[Formula: see text] and J
pubmed: 25473475
pmcid: 4222209
doi: 10.1002/ece3.1173
Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).
pubmed: 19212782
doi: 10.1007/s00442-009-1291-3
Verheijen, L. M. et al. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Glob. Chang. Biol. 21, 3074–3086 (2015).
pubmed: 25611824
doi: 10.1111/gcb.12871
Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C
pubmed: 22685562
pmcid: 3369925
doi: 10.1371/journal.pone.0038345
Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).
pubmed: 24215231
doi: 10.1111/ele.12211
Smith, N. G. et al. Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22, 506–517 (2019).
pubmed: 30609108
pmcid: 6849754
doi: 10.1111/ele.13210
Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. 481–495 https://doi.org/10.5194/bg-14-481-2017 (2017).
Xu, C. et al. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS ONE 7, 1–11 (2012).
Ali, A. A. et al. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geosci. Model. Dev. 9, 587–606 (2016).
doi: 10.5194/gmd-9-587-2016
Lawrence, D. et al. CLM5 Documentation. 309 (2018).
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
doi: 10.1111/gcb.14904
Smith, N. G. & Dukes, J. S. LCE: leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America. Ecology 98, 2978 (2017).
pubmed: 28833038
doi: 10.1002/ecy.1992
Wang, H. et al. The China plant trait database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99, 500 (2018).
pubmed: 29155446
doi: 10.1002/ecy.2091
Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).
pubmed: 29196525
pmcid: 5754770
doi: 10.1073/pnas.1708984114
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature. https://doi.org/10.1038/s41586-019-0912-1 (2019).
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE. 12, e0169748 (2017).
Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 1–18 https://doi.org/10.1111/geb.13086 (2020).
Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27 (2015).
doi: 10.1016/j.rse.2014.11.011
Moreno-Martínez, Á. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).
doi: 10.1016/j.rse.2018.09.006
Serbin, S. P. et al. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy. Remote Sens. Environ. 167, 78–87 (2015).
doi: 10.1016/j.rse.2015.05.024
Croft, H. et al. The global distribution of leaf chlorophyll content. Remote Sens. Environ. 236, 111479 (2020).
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
pubmed: 15103368
doi: 10.1038/nature02403
Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).
doi: 10.1111/geb.12296
Hikosaka, K. Interspecific difference in the photosynthesis? Nitrogen relationship: patterns, physiological causes, and ecological importance. J. Plant Res. 117, 481–494 (2004).
pubmed: 15583974
doi: 10.1007/s10265-004-0174-2
Dong, N. et al. Components of leaf-trait variation along environmental gradients. N. Phytol. 228, 82–94 (2020).
doi: 10.1111/nph.16558
Wright, S. J. et al. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99, 1129–1138 (2018).
pubmed: 29460277
doi: 10.1002/ecy.2193
Norby, R. J. et al. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. N. Phytol. 215, 1425–1437 (2017).
doi: 10.1111/nph.14319
Crous, K. Y. et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. N. Phytol. 215, 992–1008 (2017).
doi: 10.1111/nph.14591
Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S. & Medlyn, B. E. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytol. 222, 1223–1229 (2019).
doi: 10.1111/nph.15688
Dong, C., Wang, W., Liu, H., Xu, X. & Zeng, H. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: evidence from soil extracellular enzyme stoichiometry. Ecol. Indic. 101, 453–464 (2019).
doi: 10.1016/j.ecolind.2019.01.046
Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 1–5 (2015).
doi: 10.1038/nplants.2015.80
Braun, S., Thomas, V. F. D., Quiring, R. & Flückiger, W. Does nitrogen deposition increase forest production? The role of phosphorus. Environ. Pollut. 158, 2043–2052 (2010).
pubmed: 20015583
doi: 10.1016/j.envpol.2009.11.030
Giesler, R., Petersson, T. & Högberg, P. Phosphorus limitation in boreal forests: effects of aluminum and iron accumulation in the humus layer. Ecosystems 5, 300–314 (2002).
doi: 10.1007/s10021-001-0073-5
Wright, I. J., Reich, P. B. & Westoby, M. Least-Cost Input Mixtures of Water and Nitrogen for Photosynthesis. 161, 98–111 (2003).
Sibret, T. et al. High photosynthetic capacity of Sahelian C3 and C4 plants. Photosynth. Res. 147, 161–175 (2021).
pubmed: 33387194
doi: 10.1007/s11120-020-00801-3
Walters, M. B. & Field, C. B. Photosynthetic light acclimation in two rainforest Piper species with different ecological amplitudes. Oecologia 72, 449–456 (1987).
pubmed: 28311144
doi: 10.1007/BF00377578
Poorter, H. et al. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. N. Phytol. https://doi.org/10.1111/nph.15754 (2019).
doi: 10.1111/nph.15754
Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to light. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1258-7 (2020).
Brady, N. C. & Weil, R. R. The nature and properties of soils. (2008).
Batjes, N. H., Ribeiro, E. & Van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12, 299–320 (2020).
doi: 10.5194/essd-12-299-2020
Zhang, B. et al. Manure nitrogen production and application in cropland and rangeland during 1860–2014: a 5-minute gridded global data set for earth system modeling. Earth Syst. Sci. Data Discuss. 1–35 https://doi.org/10.5194/essd-2017-11 (2017).
Fleischer, K. et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests. Glob. Biogeochem. Cycles 27, 187–199 (2013).
doi: 10.1002/gbc.20026
Liang, X. et al. Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Glob. Chang. Biol. 26, 3585–3600 (2020).
pubmed: 32146723
doi: 10.1111/gcb.15071
Ethier, G. J., Livingston, N. J., Harrison, D. L., Black, T. A. & Moran, J. A. Low stomatal and internal conductance to CO
pubmed: 17081250
doi: 10.1111/j.1365-3040.2006.01590.x
Yamori, W., Suzuki, K., Noguchi, K., Nakai, M. & Terashima, I. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ. 29, 1659–1670 (2006).
pubmed: 16898026
doi: 10.1111/j.1365-3040.2006.01550.x
Warren, C. R., Dreyer, E. & Adams, M. A. Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees—Struct. Funct. 17, 359–366 (2003).
doi: 10.1007/s00468-003-0246-2
Poorter, H. & Evans, J. R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116, 26–37 (1998).
pubmed: 28308535
doi: 10.1007/s004420050560
Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ. 30, 1176–1190 (2007).
pubmed: 17661754
doi: 10.1111/j.1365-3040.2007.01690.x
Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Glob. Chang. Biol. 23, 4840–4853 (2017).
pubmed: 28560841
doi: 10.1111/gcb.13735
Terrer, C. et al. Nitrogen and phosphorus constrain the CO
doi: 10.1038/s41558-019-0545-2
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
doi: 10.1002/joc.3711
Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).
doi: 10.5194/gmd-10-689-2017
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).
doi: 10.1127/0941-2948/2006/0130
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 1–11 (2020).
doi: 10.1038/s41467-020-18321-y
Van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).
pubmed: 25225413
pmcid: 4183343
doi: 10.1073/pnas.1304551110
Jiang, C., Ryu, Y., Wang, H. & Keenan, T. An optimality-based model explains seasonal variation in C3 plant photosynthetic capacity. Glob. Chang. Biol. 0–3 https://doi.org/10.1111/gcb.15276 (2020).
Pawlowicz, R. M_Map: a mapping package for MATLAB, version 1.4m. (2020).