Functional physiological phenotyping with functional mapping: A general framework to bridge the phenotype-genotype gap in plant physiology.
Omics
Plant biology
Plant genetics
Journal
iScience
ISSN: 2589-0042
Titre abrégé: iScience
Pays: United States
ID NLM: 101724038
Informations de publication
Date de publication:
20 Aug 2021
20 Aug 2021
Historique:
received:
07
12
2020
revised:
27
05
2021
accepted:
09
07
2021
entrez:
12
8
2021
pubmed:
13
8
2021
medline:
13
8
2021
Statut:
epublish
Résumé
The recent years have witnessed the emergence of high-throughput phenotyping techniques. In particular, these techniques can characterize a comprehensive landscape of physiological traits of plants responding to dynamic changes in the environment. These innovations, along with the next-generation genomic technologies, have brought plant science into the big-data era. However, a general framework that links multifaceted physiological traits to DNA variants is still lacking. Here, we developed a general framework that integrates functional physiological phenotyping (FPP) with functional mapping (FM). This integration, implemented with high-dimensional statistical reasoning, can aid in our understanding of how genotype is translated toward phenotype. As a demonstration of method, we implemented the transpiration and soil-plant-atmosphere measurements of a tomato introgression line population into the FPP-FM framework, facilitating the identification of quantitative trait loci (QTLs) that mediate the spatiotemporal change of transpiration rate and the test of how these QTLs control, through their interaction networks, phenotypic plasticity under drought stress.
Identifiants
pubmed: 34381971
doi: 10.1016/j.isci.2021.102846
pii: S2589-0042(21)00814-2
pmc: PMC8333144
doi:
Types de publication
Journal Article
Langues
eng
Pagination
102846Informations de copyright
© 2021 The Author(s).
Déclaration de conflit d'intérêts
The authors declare that they have no competing interests.
Références
Plant J. 2017 Feb;89(4):839-850
pubmed: 27868265
Nat Rev Genet. 2006 Mar;7(3):229-37
pubmed: 16485021
Trends Plant Sci. 2015 Mar;20(3):139-44
pubmed: 25524213
Bioinformatics. 2005 May 15;21(10):2469-77
pubmed: 15769837
PLoS One. 2012;7(7):e40563
pubmed: 22802968
Trends Plant Sci. 2018 May;23(5):451-466
pubmed: 29555431
BMC Plant Biol. 2017 Jul 6;17(1):114
pubmed: 28683779
Plant Sci. 2019 May;282:49-59
pubmed: 31003611
Heredity (Edinb). 2012 Feb;108(2):134-46
pubmed: 21792229
Genetics. 2003 Apr;163(4):1533-48
pubmed: 12702696
Trends Genet. 2010 Jan;26(1):39-46
pubmed: 19945189
Trends Plant Sci. 2010 Dec;15(12):684-92
pubmed: 20970368
Curr Biol. 2017 Aug 7;27(15):R770-R783
pubmed: 28787611
Adv Drug Deliv Rev. 2013 Jun 30;65(7):912-7
pubmed: 23528445
Ecol Evol. 2017 Nov 12;7(24):10880-10889
pubmed: 29299266
BMC Bioinformatics. 2006 Mar 15;7:138
pubmed: 16539724
Mol Plant. 2016 Jan 4;9(1):10-20
pubmed: 26415696
Mol Plant. 2018 Jun 4;11(6):789-805
pubmed: 29614319
J Exp Bot. 2014 May;65(8):1981-95
pubmed: 24638898
Plant Physiol. 2018 Oct;178(2):699-715
pubmed: 30093527
Plant J. 2019 Mar;97(6):1105-1119
pubmed: 30536457
Plant Sci. 2017 Jul;260:109-118
pubmed: 28554468
Front Plant Sci. 2015 Oct 27;6:891
pubmed: 26579145
J Exp Bot. 2015 Sep;66(18):5581-93
pubmed: 26034130
Photosynth Res. 2014 Feb;119(1-2):119-29
pubmed: 23893317
J Vis Exp. 2020 Aug 5;(162):
pubmed: 32831303
Biol Rev Camb Philos Soc. 2010 May;85(2):207-16
pubmed: 19930171
Mol Plant. 2015 Oct 5;8(10):1520-35
pubmed: 26099924
Genetics. 1995 Nov;141(3):1147-62
pubmed: 8582620
Plant Physiol. 2017 Jul;174(3):1913-1930
pubmed: 28522456
Plant Physiol. 2010 Jan;152(1):245-54
pubmed: 19939947
Funct Plant Biol. 2016 Feb;44(1):107-118
pubmed: 32480550
Trends Plant Sci. 2015 Dec;20(12):822-833
pubmed: 26482958
Ann Appl Stat. 2015 Jun;9(2):640-664
pubmed: 26478762
Brief Bioinform. 2018 Jul 20;19(4):603-612
pubmed: 28203720
Physiol Plant. 2018 Dec;164(4):412-428
pubmed: 30084486