Modeling processive motion of kinesin-13 MCAK and kinesin-14 Cik1-Kar3 molecular motors.
Vik1-Kar3
diffusion
kinesin
microtubule
molecular motor
processivity
Journal
Protein science : a publication of the Protein Society
ISSN: 1469-896X
Titre abrégé: Protein Sci
Pays: United States
ID NLM: 9211750
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
02
08
2021
received:
28
04
2021
accepted:
04
08
2021
pubmed:
13
8
2021
medline:
25
12
2021
entrez:
12
8
2021
Statut:
ppublish
Résumé
Kinesin-13 MCAK, which is composed of two identical motor domains, can undergo unbiased one-dimensional diffusion on microtubules. Kinesin-14 Cik1-Kar3, which is composed of a Kar3 motor domain and a Cik1 motor homology domain with no ATPase activity, can move processively toward the minus end of microtubules. Here, we present a model for the diffusion of MCAK homodimer and a model for the processive motion of Cik1-Kar3 heterodimer. Although the two dimeric motors show different domain composition, in the models it is proposed that the two motors use the similar physical mechanism to move processively. With the models, the dynamics of the two dimers is studied analytically. The theoretical results for MCAK reproduce quantitatively the available experimental data about diffusion constant and lifetime of the motor bound to microtubule in different nucleotide states. The theoretical results for Cik1-Kar3 reproduce quantitatively the available experimental data about load dependence of velocity and explain consistently the available experimental data about effects of the exchange and mutation of the motor homology domain on the velocity of the heterodimer. Moreover, predicted results for other aspects of the dynamics of the two dimers are provided.
Identifiants
pubmed: 34382258
doi: 10.1002/pro.4165
pmc: PMC8442974
doi:
Substances chimiques
Microtubule-Associated Proteins
0
Kinesins
EC 3.6.4.4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2092-2105Informations de copyright
© 2021 The Protein Society.
Références
Elife. 2015 Jan 27;4:
pubmed: 25626168
Biophys Chem. 2020 Sep;264:106427
pubmed: 32682233
Cell. 1990 Mar 23;60(6):1029-41
pubmed: 2138512
J Mol Biol. 1997 Feb 7;265(5):553-64
pubmed: 9048948
J Cell Biol. 2004 Oct 11;167(1):19-22
pubmed: 15479732
Cell. 2007 Mar 23;128(6):1161-72
pubmed: 17382884
Nature. 1995 Jul 20;376(6537):271-4
pubmed: 7617040
Nat Cell Biol. 2009 Jun;11(6):717-23
pubmed: 19430467
Science. 1999 Feb 19;283(5405):1152-7
pubmed: 10024239
J Theor Biol. 2020 Apr 7;490:110173
pubmed: 31982418
J Cell Biol. 1995 Jan;128(1-2):95-104
pubmed: 7822426
J Chem Inf Model. 2019 Jan 28;59(1):360-372
pubmed: 30500195
Phys Rev Lett. 2016 Aug 12;117(7):078101
pubmed: 27564000
Sci Rep. 2019 Nov 18;9(1):16973
pubmed: 31740721
Trends Cell Biol. 2005 Sep;15(9):467-76
pubmed: 16084724
EMBO J. 2005 Sep 21;24(18):3214-23
pubmed: 16107877
J Mol Biol. 2001 Nov 9;313(5):1045-57
pubmed: 11700061
FEBS Open Bio. 2018 Jul 20;8(8):1332-1351
pubmed: 30087836
PLoS One. 2012;7(4):e36071
pubmed: 22558333
J Biol Chem. 2001 Sep 14;276(37):34753-8
pubmed: 11466324
Protein Sci. 2021 Oct;30(10):2092-2105
pubmed: 34382258
Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96
pubmed: 19773780
J Struct Biol. 1997 Mar;118(2):140-8
pubmed: 9126639
Proteins. 2018 Nov;86(11):1127-1139
pubmed: 30132979
ACS Omega. 2020 Mar 10;5(11):5721-5730
pubmed: 32226850
Biochemistry. 1998 Jan 20;37(3):800-13
pubmed: 9454569
Cell. 2016 Oct 6;167(2):539-552.e14
pubmed: 27716509
Nat Struct Biol. 2001 Jun;8(6):540-4
pubmed: 11373624
Biochemistry. 2000 Feb 22;39(7):1784-91
pubmed: 10677228
Mol Cell. 2003 Feb;11(2):445-57
pubmed: 12620232
Nature. 2006 May 4;441(7089):115-9
pubmed: 16672973
Int J Mol Sci. 2019 Oct 03;20(19):
pubmed: 31623357
J Biol Chem. 2003 May 16;278(20):18550-6
pubmed: 12626516
Int J Biol Sci. 2010 Nov 03;6(7):665-74
pubmed: 21060728
Sci Rep. 2021 Apr 13;11(1):8081
pubmed: 33850247
Phys Rev Lett. 2007 Jun 22;98(25):258102
pubmed: 17678059
Biochim Biophys Acta. 2007 Dec;1767(12):1418-27
pubmed: 17976515
J Mol Biol. 2004 Jan 2;335(1):139-53
pubmed: 14659746
Science. 2009 Aug 14;325(5942):870-3
pubmed: 19679813
Cell. 2003 Feb 21;112(4):467-80
pubmed: 12600311
J Cell Biol. 2006 Jan 2;172(1):27-39
pubmed: 16380440
Nature. 2006 Feb 16;439(7078):875-8
pubmed: 16382238
Int J Mol Sci. 2021 Jun 23;22(13):
pubmed: 34201478
Cell. 2008 Sep 19;134(6):1030-41
pubmed: 18805095
Proteins. 2020 Apr;88(4):545-557
pubmed: 31589786
Nat Commun. 2018 Apr 25;9(1):1662
pubmed: 29695795
Biopolymers. 2016 Aug;105(8):476-82
pubmed: 27120111
EMBO J. 2015 May 5;34(9):1270-86
pubmed: 25777528
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7748-53
pubmed: 11427717
J Cell Biol. 2012 Jun 25;197(7):957-70
pubmed: 22734002
Biophys J. 2013 Jun 4;104(11):2456-64
pubmed: 23746518
PLoS One. 2013;8(1):e53792
pubmed: 23342004
J Cell Biol. 1999 Mar 22;144(6):1219-33
pubmed: 10087265
J Biol Chem. 2011 Aug 19;286(33):29261-29272
pubmed: 21680740
Genes Dev. 1992 Aug;6(8):1414-29
pubmed: 1644287