One more time about motor (and non-motor) synergies.
Abundance
Neurological disorders
Perception
Redundancy
Referent coordinate
Stability
Uncontrolled manifold
Journal
Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
22
01
2021
accepted:
03
08
2021
pubmed:
13
8
2021
medline:
27
10
2021
entrez:
12
8
2021
Statut:
ppublish
Résumé
We revisit the concept of synergy based on the recently translated classical book by Nikolai Bernstein (On the construction of movements, Medgiz, Moscow 1947; Latash, Bernstein's Construction of Movements, Routledge, Abingdon 2020b) and progress in understanding the physics and neurophysiology of biological action. Two aspects of synergies are described: organizing elements into stable groups (modes) and ensuring dynamical stability of salient performance variables. The ability of the central nervous system to attenuate synergies in preparation for a quick action-anticipatory synergy adjustments-is emphasized. Recent studies have demonstrated synergies at the level of hypothetical control variables associated with spatial referent coordinates for effectors. Overall, the concept of synergies fits naturally the hierarchical scheme of control with referent coordinates with an important role played by back-coupling loops within the central nervous system and from peripheral sensory endings. Further, we review studies showing non-trivial changes in synergies with development, aging, fatigue, practice, and a variety of neurological disorders. Two aspects of impaired synergic control-impaired stability and impaired agility-are introduced. The recent generalization of the concept of synergies for non-motor domains, including perception, is discussed. We end the review with a list of unresolved and troubling issues.
Identifiants
pubmed: 34383080
doi: 10.1007/s00221-021-06188-4
pii: 10.1007/s00221-021-06188-4
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2951-2967Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Aeles J, Kelly LA, Yoshitake Y, Cresswell AG (2020) Fine-wire recordings of flexor hallucis brevis motor units up to maximal voluntary contraction reveal a flexible, non-rigid mechanism for force control. J Neurophysiol 123:1766–1774
pubmed: 32267195
Ambike S, Zatsiorsky VM, Latash ML (2015) Processes underlying unintentional finger force changes in the absence of visual feedback. Exp Brain Res 233:711–721
pubmed: 25417192
Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016a) Synergies in the space of control variables within the equilibrium-point hypothesis. Neurosci 315:150–161
Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016b) Unsteady steady-states: central causes of unintentional force drift. Exp Brain Res 234:3597–3611
pubmed: 27540726
pmcid: 5097679
Ambike S, Pinedo T, Kulkarni A, Santinelli FP, Barbieri FA (2021) Step length synergy while crossing obstacles is weaker in patients with Parkinson’s disease. Gait Posture 84:340–345
pubmed: 33454501
Babinski F (1899) De L’asynergie Cerebelleuse. Rev Neurologique 7:806–816
Berger DJ, Masciullo M, Molinari M, Lacquaniti F, D’Avella A (2020) Does the cerebellum shape the spatiotemporal organization of muscle patterns? Insights from subjects with cerebellar ataxias. J Neurophysiol 123:1691–1710
pubmed: 32159425
Bernstein NA (1935) The problem of interrelation between coordination and localization. Archs Biol Sci 38:1–35 (in Russian)
Bernstein NA (1947) On the construction of movements. Medgiz: Moscow (in Russian). English translation in Latash 2020b
Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford
Bernstein NA (1996) On dexterity and its development. In: Latash ML, Turvey MT (eds) Dexterity and its development. Erlbaum Publ, Mahwah, NJ, pp 1–244
Bizzi E, Ajemian R (2020) From motor planning to execution: a sensorimotor loop perspective. J Neurophysiol 124:1815–1823
pubmed: 33052779
Bobath B (1978) Adult hemiplegia: evaluation and treatment. William Heinemann, London
Booth FW, Weeden SH, Tseng BS (1994) Effect of aging on human skeletal muscle and motor function. Med Sci Sport Exer 26:556–560
Botzheim L, Laczko J, Torricelli D, Mravcsik M, Pons JP, Oliveiro Barroso F (2021) Effects of gravity and kinematic constraints on muscle synergies in arm cycling. J Neurophysiol 125:1367–1381
pubmed: 33534650
Bowler RM, Nakagawa S, Drezgic M, Roels HA, Park RM, Diamond E, Mergler D, Bouchard M, Bowler RP, Koller W (2007) Sequelae of fume exposure in confined space welding: a neurological and neuropsychological case series. Neurotoxicol 28:298–311
Brooks SV, Faulkner JA (1994) Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sport Exer 26:432–439
Bruton M, O’Dwyer N (2018) Synergies in coordination: a comprehensive overview of neural, computational, and behavioral approaches. J Neurophysiol 120:2761–2774
pubmed: 30281388
Cheng EJ, Loeb GE (2008) On the use of musculoskeletal models to interpret motor control strategies from performance data. J Neural Eng 5:232–253
pubmed: 18506076
Cossu G, Pau M (2017) Subthalamic nucleus stimulation and gait in Parkinson’s disease: a not always fruitful relationship. Gait Posture 52:205–210
pubmed: 27915226
Côté JN, Mathieu PA, Levin MF, Feldman AG (2002) Movement reorganization to compensate for fatigue during sawing. Exp Brain Res 146:394–398
pubmed: 12232697
Côté JN, Feldman AG, Mathieu PA, Levin MF (2008) Effects of fatigue on intermuscular coordination during repetitive hammering. Mot Control 12:79–92
Cuadra C, Latash ML (2019) Exploring the concept of iso-perceptual manifold (IPM): a study of finger force matching. Neurosci 401:130–141
Cuadra C, Wojnicz W, Kozinc Z, Latash ML (2020) Perceptual and motor effects of muscle co-activation in a force production task. Neurosci 437:34–44. https://doi.org/10.1016/j.neuroscience.2020.04.023
doi: 10.1016/j.neuroscience.2020.04.023
pubmed: 32335217
Cuadra C, Corey J, Latash ML (2021a) Distortions of the efferent copy during force perception: a study of force drifts and effects of muscle vibration. Neurosci 457:139–154
Cuadra C, Gilmore R, Latash ML (2021b) Finger force matching and verbal reports: testing predictions of the Iso-Perceptual Manifold (IPM) concept. J Mot Behav 53:598–610
pubmed: 32883191
Cuadra C, Gilmore R, Latash ML (2021c) Finger force matching and verbal reports: testing predictions of the Iso-Perceptual Manifold (IPM) concept. J Motor Behav 53:598–610
doi: 10.1080/00222895.2020.1813681
Danion F, Schöner G, Latash ML, Li S, Scholz JP, Zatsiorsky VM (2003) A force mode hypothesis for finger interaction during multi-finger force production tasks. Biol Cybern 88:91–98
pubmed: 12567224
Danna-Dos-Santos A, Degani AM, Latash ML (2008) Flexible muscle modes and synergies in challenging whole-body tasks. Exp Brain Res 189:171–187
pubmed: 18521583
pmcid: 2557102
De Freitas PB, Freitas SMSF, Reschechtko S, Corson T, Lewis MM, Huang X, Latash ML (2020a) Synergic control of action in levodopa-naïve Parkinson’s disease patients: I. Multi-finger interaction and coordination. Exp Brain Res 238:229–245
pubmed: 31838566
DeWald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118:495–510
pubmed: 7735890
Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D (2001) Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng 123:27–32
pubmed: 11277298
Dinse HR (2006) Cortical reorganization in the aging brain. Prog Brain Res 157:57–80
pubmed: 17167904
Dominici N, Ivanenko YP, Cappellini G et al (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999
pubmed: 22096202
Domkin D, Laczko J, Jaric S, Johansson H, Latash ML (2002) Structure of joint variability in bimanual pointing tasks. Exp Brain Res 143:11–23
pubmed: 11907686
Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7:14
pubmed: 23494365
pmcid: 3595503
Eisen A, Entezari-Taher M, Stewart H (1996) Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis. Neurology 46:1396–1404
pubmed: 8628489
Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23
pubmed: 17702815
Erim Z, Beg FM, Burke DT, De Luca CJ (1999) Effects of aging on motor-unit control properties. J Neurophysiol 82:2081–2091
pubmed: 10561389
Falaki A, Huang X, Lewis MM, Latash ML (2016) Impaired synergic control of posture in Parkinson’s patients without postural instability. Gait Posture 44:209–215
pubmed: 27004660
Falaki A, Huang X, Lewis MM, Latash ML (2017a) Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson’s disease. J Electromyogr Kinesiol 33:20–26
pubmed: 28110044
pmcid: 5357450
Falaki A, Huang X, Lewis MM, Latash ML (2017b) Motor equivalence and structure of variance: Multi-muscle postural synergies in Parkinson’s disease. Exp Brain Res 235:2243–2258
pubmed: 28455740
pmcid: 5507367
Falaki A, Jo HJ, Lewis MM, O’Connell B, De Jesus S, McInerney J, Huang X, Latash ML (2018) Systemic effects of deep brain stimulation on synergic control in Parkinson’s disease. Clin Neurophysiol 129:1320–1332
pubmed: 29573980
pmcid: 5938107
Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. controllable parameters of the muscle. Biophysics 11:565–578
Feldman AG (1980) Superposition of motor programs. I. rhythmic forearm movements in man. Neurosci 5:81–90
Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ–model) for motor control. J Mot Behav 18:17–54
pubmed: 15136283
Feldman AG (2009) New insights into action-perception coupling. Exp Brain Res 194:39–58
pubmed: 19082821
Feldman AG (2015) Referent control of action and perception: challenging conventional theories in behavioral science. Springer, New York
Feldman AG (2016) Active sensing without efference copy: referent control of perception. J Neurophysiol 116(3):960–976. https://doi.org/10.1152/jn.00016.2016
doi: 10.1152/jn.00016.2016
pubmed: 27306668
pmcid: 5009211
Feldman AG, Latash ML (1982) Afferent and efferent components of joint position sense: interpretation of kinaesthetic illusions. Biol Cybern 42:205–214
pubmed: 7059622
Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium-point hypothesis. Exp Brain Res 161:91–103
pubmed: 15490137
Freitas SMSF, de Freitas PB, Falaki A, Corson T, Lewis MM, Huang X, Latash ML (2020b) Synergic control of action in levodopa-naïve Parkinson’s disease patients. II. Multi-muscle synergies stabilizing vertical posture. Exp Brain Res 238:2931–2945
pubmed: 33068173
Gelfand IM, Latash ML (1998) On the problem of adequate language in movement science. Mot Control 2:306–313
Gera G, Freitas SM, Scholz JP (2016a) Relationship of diminished interjoint coordination after stroke to hand path consistency. Exp Brain Res 234:741–751
pubmed: 26608514
Gera G, McGlade KE, Reisman DS, Scholz JP (2016b) Trunk muscle coordination during upward and downward reaching in stroke survivors. Mot Control 20:50–69
Gersosimo MG, Koller WS (2006) The diagnosis of manganese-induced parkinsonism. Toxicology 27:340–346
Golenia L, Schoemaker MM, Otten E, Mouton LJ, Bongers RM (2018) Developing of reaching during mid-choldhood from a developmental systems perspective. PLoS ONE 13(2):e0193463
pubmed: 29474421
pmcid: 5825127
Gorniak S, Zatsiorsky VM, Latash ML (2007) Hierarchies of synergies: an example of the two-hand, multi-finger tasks. Exp Brain Res 179:167–180
pubmed: 17103206
Gorniak S, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15
pubmed: 19048236
Grabiner MD, Enoka RM (1995) Changes in movement capabilities with aging. Exerc Sport Sci Rev 23:65–104
pubmed: 7556361
Gribble PL, Ostry DJ, Sanguineti V, Laboissiere R (1998) Are complex control signals required for human arm movements? J Neurophysiol 79:1409–1424
pubmed: 9497421
Hasanbarani F, Latash ML (2020) Performance-stabilizing synergies in a complex motor task: analysis based on the uncontrolled manifold hypothesis. Mot Control 24:238–252
Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL (1985) Fractal dynamics of human gait: stability of long-range correlations in stride interval of human gail. J Appl Physiol 80:1448–1457
Hoehn M, Yahr M (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442
pubmed: 6067254
pmcid: 6067254
Houk JC (2005) Agents of the mind. Biol Cybern 92:427–437
pubmed: 15915357
Houk JC, Buckingham JT, Barto AG (1996) Models of the cerebellum and motor learning. Behav Brain Sci 19:368–383
Hughlings Jackson J (1889) On the comparative study of disease of the nervous system. Brit Med J 17:355–362
Hultborn H, Brownstone RB, Toth TI, Gossard JP (2004) Key mechanisms for setting the input-output gain across the motoneuron pool. Prog Brain Res 143:77–95
pubmed: 14653153
Inglin B, Woollacott MH (1988) Anticipatory postural adjustments associated with reaction time arm movements: a comparison between young and old. J Gerontol 43:M105–M113
pubmed: 3385142
Ioffe ME, Chernikova LA, Ustinova KI (2007) Role of cerebellum in learning motor tasks. Cerebellum 6:87–94
pubmed: 17366270
Ivanenko YP, Poppele RE, Lacquaniti F (2006) Motor control programs and walking. Neuroscientist 12:339–348
pubmed: 16840710
Ivanenko YP, Dominici N, Cappellini G, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F (2013) Changes in the spinal segmental motor output for stepping during development from infant to adult. J Neurosci 33:3025–3036
pubmed: 23407959
pmcid: 6619203
Jo HJ, Park J, Lewis MM, Huang X, Latash ML (2015) Prehension synergies and hand function in early-stage Parkinson’s disease. Exp Brain Res 233:425–440
pubmed: 25370346
Jo HJ, Maenza C, Good DC, Huang X, Park J, Sainburg RL, Latash ML (2016) Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. Neuroscience 319:194–205
pubmed: 26828408
Jo HJ, Lucassen E, Huang X, Latash ML (2017) Changes in multi-digit synergies and their feed-forward adjustments in multiple sclerosis. J Motor Behav 49:218–228
Jordan K, Challis JH, Newell KM (2007) Speed influences on the scaling behavior of gait cycle fluctuations during treadmill running. Hum Move Sci 26:87–102
Jordan K, Challis JH, Cusumano JP, Newell KM (2009) Stability and time-dependent structure of gait variability in walking and running. Hum Move Sci 28:113–128
Kang N, Shinohara M, Zatsiorsky VM, Latash ML (2004) Learning multi-finger synergies: an uncontrolled manifold analysis. Exp Brain Res 157:336–350
pubmed: 15042264
Kang N, Roberts LM, Aziz C, Cauraugh JH (2019) Age-related deficits in bilateral motor synergies and force coordination. BMC Geriatr 19(1):287
pubmed: 31651243
pmcid: 6814115
Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727
pubmed: 10607637
pmcid: 10607637
Kinoshita H, Francis PR (1996) A comparison of prehension force control in young and elderly individuals. European J Appl Physiol 74:450–460
Klishko AN, Farrell BJ, Beloozerova IN, Latash ML, Prilutsky BI (2014) Stabilization of cat paw trajectory during locomotion. J Neurophysiol 112:1376–1391
pubmed: 24899676
pmcid: 4137248
Krishnamoorthy V, Goodman SR, Latash ML, Zatsiorsky VM (2003) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89:152–161
pubmed: 12905043
Lacquaniti F, Ivanenko YP, Zago M (2012a) Development of human locomotion. Curr Opin Neurobiol 22:822–828
pubmed: 22498713
Lacquaniti F, Ivanenko YP, Zago M (2012b) Patterned control of human locomotion. J Physiol 590:2189–2199
pubmed: 22411012
pmcid: 3424743
Latash ML (1992) Virtual trajectories, joint stiffness, and changes in natural frequency during single-joint oscillatory movements. Neurosci 49:209–220
Latash ML (2008) Synergy. Oxford University Press, New York
Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322
Latash ML (2012) The bliss (not the problem) of motor abundance (not redundancy). Hum Move Sci 217:1–5
Latash ML (2018) Stability of kinesthetic perception in efferent-afferent spaces: the concept of iso-perceptual manifold. Neurosci 372:97–113
Latash ML (2019) Physics of biological action and perception. Academic Press, New York
Latash ML (2020a) On primitives in motor control. Mot Control 24:318–346
Latash ML (ed) (2020b) Bernstein’s construction of movements. Routledge, Abingdon
Latash ML (2021) Laws of nature that define biological action and perception. Phys Life Rev 36:47–67
pubmed: 32868159
Latash ML, Gottlieb GL (1991) Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neurosci 43:697–712
Latash ML, Huang X (2015) Neural control of movement stability: Lessons from studies of neurological patients. Neurosci 301:39–48
Latash ML, Zatsiorsky VM (1993) Joint stiffness: myth or reality? Hum Move Sci 12:653–692
Latash ML, Zatsiorsky VM (2016) Biomechanics and motor control: defining central concepts. Academic Press, New York
Latash ML, Aruin AS, Zatsiorsky VM (1999) The basis of a simple synergy: reconstruction of joint equilibrium trajectories during unrestrained arm movements. Hum Move Sci 18:3–30
Latash ML, Yarrow K, Rothwell JC (2003) Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multi-finger force production task. Hum Move Sci 151:60–71
Latash ML, Shim JK, Smilga AV, Zatsiorsky V (2005) A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model. Biol Cybern 92:186–191
pubmed: 15739110
pmcid: 2827178
Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308
Lewis MM, Lee E-Y, Jo HJ, Park J, Latash ML, Huang X (2016) Synergy as a new and sensitive marker of basal ganglia dysfunction: a study of asymptomatic welders. Neurotoxicol 56:76–85
Loeb GE (1999) What might the brain know about muscles, limbs and spinal circuits? Prog Brain Res 123:405–409
pubmed: 10635735
Madarshahian S, Latash ML (2021) Synergies at the level of motor units in single-finger and multi-finger tasks. Exp Brain Res (in Press). https://doi.org/10.1007/s00221-021-06180-y
doi: 10.1007/s00221-021-06180-y
Madarshahian S, Letizi J, Latash ML (2021) Synergic control of a single muscle: the example of flexor digitorum superficialis. J Physiol 599:1261–1279
pubmed: 33206377
Mangalam M, Rein R, Fragaszy DM (2018) Bearded capuchin monkeys use joint synergies to stabilize the hammer trajectory while cracking nuts in bipedal stance. Proc Royal Soc Biol Sci 285:1889
Marconi R, Landi A, Valzania F (2008) Subthalamic nucleus stimulation in Parkinson’s disease. Neurol Sci 29(Suppl 5):S389-391
pubmed: 19381771
Martin V, Scholz JP, Schöner G (2009) Redundancy, self-motion, and motor control. Neural Comput 21:1371–1414
pubmed: 19718817
pmcid: 3086896
Martin JR, Budgeon MK, Zatsiorsky VM, Latash ML (2011) Stabilization of the total force in multi-finger pressing tasks studied with the ‘inverse piano’ technique. Hum Mov Sci 30:446–458
pubmed: 21450360
pmcid: 3095732
Martin V, Reimann H, Schöner G (2019) A process account of the uncontrolled manifold structure of joint space variance in pointing movements. Biol Cybern 113:293–307
pubmed: 30771072
pmcid: 6510836
Massion J (1992) Movement, posture and equilibrium—interaction and coordination. Prog Neurobiol 38:35–56
pubmed: 1736324
Mattos D, Latash ML, Park E, Kuhl J, Scholz JP (2011) Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. J Neurophysiol 106:1424–1436
pubmed: 21676927
pmcid: 3174825
Mattos D, Kuhl J, Scholz JP, Latash ML (2013) Motor equivalence (ME) during reaching: is ME observable at the muscle level? Mot Control 17:145–175
Mattos D, Schöner G, Zatsiorsky VM, Latash ML (2015) Motor equivalence during accurate multi-finger force production. Hum Move Sci 233:487–502
Meyendorff J (1974) St. Gregory Palamas and orthodox spirituality. St. Vladimir’s Seminary Press, USA
Möhler F, Marahrens S, Ringhof S, Mikut R, Stein T (2020) Variability in running coordination in experts and novices: a 3D uncontrolled manifold analysis. Eur J Sport Sci 17:1–10
Morrison A, McGrath D, Wallace ES (2016) Motor abundance and control structure in the golf swing. Hum Mov Sci 46:129–147
pubmed: 26784706
Müller H, Sternad D (2003) A randomization method for the calculation of covariation in multiple nonlinear relations: illustrated with the example of goal-directed movements. Biol Cybern 89:22–33
pubmed: 12836030
Nichols TR (2018) Distributed force feedback in the spinal cord and the regulation of limb mechanics. J Neurophysiol 119:1186–1200
pubmed: 29212914
pmcid: 29212914
Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML (2005) Anticipatory covariation of finger forces during self-paced and reaction time force production. Neurosci Lett 381:92–96
pubmed: 15882796
pmcid: 2827154
Olafsdottir H, Zhang W, Zatsiorsky VM, Latash ML (2007) Age related changes in multi-finger synergies in accurate moment of force production tasks. J Appl Physiol 102:1490–1501
pubmed: 17204576
Olafsdottir H, Kim SW, Zatsiorsky VM, Latash ML (2008) Anticipatory synergy adjustments in preparation to self-triggered perturbations in elderly individuals. J Appl Biomech 24:175–179
pubmed: 18579910
pmcid: 2546357
Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153:275–288
pubmed: 14610628
Park J, Wu Y-H, Lewis MM, Huang X, Latash ML (2012) Changes in multi-finger interaction and coordination in Parkinson’s disease. J Neurophysiol 108:915–924
pubmed: 22552184
pmcid: 3424084
Park J, Lewis MM, Huang X, Latash ML (2013) Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. Clin Neurophysiol 124:991–998
pubmed: 23182835
Park J, Lewis MM, Huang X, Latash ML (2014) Dopaminergic modulation of motor coordination in Parkinson’s disease. Parkins Rel Disord 20:64–68
Parsa B, O’Shea DJ, Zatsiorsky VM, Latash ML (2016) On the nature of unintentional action: a study of force/moment drifts during multi-finger tasks. J Neurophysiol 116:698–708
pubmed: 27193319
pmcid: 6345242
Passos P, Lacasa E, Milho J, Torrents C (2020) Capturing interpersonal synergies in social setting: an example with a badminton cooperative task. Nonlinear Dyn Psychol Life Sci 24:59–78
Pham BN, Luo J, Anand H, Kola O, Salcedo P, Nguyen C, Gaunt S, Zhong H, Garfinkel A, Tillakaratne N, Edgerton VR (2020) Redundancy and multifunctionality among spinal locomotor networks. J Neurophysiol 124:1469–1479
pubmed: 32966757
Reisman D, Scholz JP (2003) Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 126:2510–2527
pubmed: 12958080
Reschechtko S, Latash ML (2017) Stability of hand force production: I. Hand level control variables and multi-finger synergies. J Neurophysiol 118:3152–3164
pubmed: 28904102
pmcid: 5814709
Rocchi L, Carlson-Kuhta P, Chiari L, Burchiel KJ, Hogarth P, Horak FB (2012) Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease: laboratory investigation. J Neurosurg 117:1141–1149
pubmed: 23039143
pmcid: 3990225
Rodgers MA, Evans WJ (1993) Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev 21:65–102
Rosenblatt NJ, Hurt CP, Latash ML, Grabiner MD (2014) An apparent contradiction: increasing variability to achieve greater precision? Exp Brain Res 232:403–413
pubmed: 24162866
Rosenblatt NJ, Eckardt N, Kuhman D, Hurt CP (2020) Older but not younger adults rely on multijoint coordination to stabilize the swinging limb when performing a novel cued walking task. Exp Brain Res 238:1441–1454
pubmed: 32385736
pmcid: 7303923
Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306
pubmed: 10382616
Scholz JP, Schöner G (2014) Use of the uncontrolled manifold (UCM) approach to understand motor variability, motor equivalence, and self-motion. Adv Exp Med Biol 826:91–100
pubmed: 25330887
Scholz JP, Schöner G, Hsu WL, Jeka JJ, Horak F, Martin V (2007) Motor equivalent control of the center of mass in response to support surface perturbations. Exp Brain Res 180:163–179
pubmed: 17256165
Schöner G (1995) Recent developments and problems in human movement science and their conceptual implications. Ecol Psychol 8:291–314
Serrien B, Tassignon B, Verschueren J, Meeusen R, Baeyens J-P (2020) Short-term effects on differential learning and contextual interference in a goalkeeper-like task: visuomotor response time and motor control. Eur J Sport Sci 20:1061–1071
pubmed: 31755374
Shadmehr R (2017) Distinct neural circuits for control of movement vs. holding still. J Neurophysiol 117:1431–1460
pubmed: 28053244
pmcid: 5376603
Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing. MIT Press, Cambridge
Shaklai S, Mimouni-Bloch A, Levin M, Friedman J (2017) Development of finger force coordination in children. Exp Brain Res 235:3709–3720
pubmed: 28936720
Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 164:260–270
pubmed: 15770477
pmcid: 2826980
Singh T, Varadhan SKM, Zatsiorsky VM, Latash ML (2010a) Fatigue and motor redundancy: adaptive increase in force variance in multi-finger tasks. J Neurophysiol 103:2990–3000
pubmed: 20357060
pmcid: 2888234
Singh T, Varadhan SKM, Zatsiorsky VM, Latash ML (2010b) Adaptive increase in force variance during fatigue in tasks with low redundancy. Neurosci Lett 485:204–207
pubmed: 20849913
pmcid: 2956869
Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489
pubmed: 14794830
Spirduso WW, Francis K, Eakin T, Stanford C (2005) Quantification of manual force control and tremor. J Mot Behav 37:197–210
pubmed: 15883117
St. Gregory Palamas (1983) The Triads. Classics of Western Spirituality. Paulist Press, Mahwah, NJ
St. Gregory Palamas (1988) The One Hundred and Fifty Chapters. Pontifical Institute of Mediaeval Studies, Toronto
Sylos-Labini F, Zago M, Guertin PA, Lacquaniti F, Ivanenko YP (2017) Muscle coordination and locomotion in humans. Curr Pharm Des 23:1821–1833
pubmed: 28128057
Sylos-Labini F, La Scaleia V, Cappellini G et al (2020) Distinct locomotor precursors in newborn babies. Proc Natl Acad Sci USA 117:9604–9612
pubmed: 32284405
pmcid: 7196819
Thach WT, Goodkin HG, Keating JG (1992) Cerebellum and the adaptive coordination of movement. Ann Rev Neurosci 15:403–442
pubmed: 1575449
Tillman M, Ambike S (2018) Cue-induced changes in the stability of finger force-production tasks revealed by the uncontrolled manifold analysis. J Neurophysiol 119:21–32
pubmed: 28931612
Tillman M, Ambike S (2020) The influence of recent actions and anticipated actions on the stability of finger forces during a tracking task. Mot Control 24:365–382
Ting LH, McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Curr Opin Neurobiol 17:622–628
pubmed: 18304801
Tomita Y, Turpin NA, Piscitelli D, Feldman AG, Levin MF (2020) Stability of reaching during standing in stroke. J Neurophysiol 123:1756–1765
pubmed: 32233891
Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 19:601–607
pubmed: 19828310
pmcid: 2818278
Turvey MT (1990) Coordination. Amer Psychol 45(8):938–953. https://doi.org/10.1037/0003-066X.45.8.938
doi: 10.1037/0003-066X.45.8.938
Turvey MT (2007) Action and perception at the level of synergies. Hum Move Sci 26:657–697
Uchiyama T, Johansson H, Windhorst U (2003) Static and dynamic input-output relations of the feline medial gastrocnemius motoneuron-muscle system subjected to recurrent inhibition: a model study. Biol Cybern 89:264–273
pubmed: 14605891
Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285
pubmed: 12136377
Van Heijst JJ, Vos JE, Bullock D (1998) Development in a biologically inspired spinal neural network for movement control. Neur Networks 11:1305–1316
Von Holst E, Mittelstaedt H (1950/1973) Daz reafferezprincip. Wechselwirkungen zwischen Zentralnerven-system und Peripherie, Naturwiss. 37: 467–476, 1950. The reafference principle. In: The Behavioral Physiology of Animals and Man. The Collected Papers of Erich von Holst. Martin R (trans) University of Miami Press, Coral Gables, Florida, 1 pp 139–173
Vandekerckhove I, De Beukelaer N, Van den Hauwe M et al (2020) Muscle weakness has a limited effect on motor control of gait in Duchenne muscular dystrophy. PLoS ONE 15(9):e0238445
pubmed: 32877421
pmcid: 7467330
Vereijken B, van Emmerick REA, Whiting HTA, Newell KM (1992) Free(z)ing degrees of freedom in skill acquisition. J Mot Behav 24:133–142
Verrel J, Lövden M, Lindenberger U (2012) Normal aging reduces motor synergies in manual pointing. Neurobiol Aging 33:200.e1–10
Wang Y, Watanabe K, Asaka T (2017) Aging effect on muscle synergies in stepping forth during a forward perturbation. Eur J Appl Physiol 117:201–211
pubmed: 28004203
Welsh JP, Llinas R (1997) Some organizing principles for the control of movement based on olivocerebellar physiology. Prog Brain Res 114:449–461
pubmed: 9193160
Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347
pubmed: 21227230
pmcid: 21227230
Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML (2012) Practicing elements vs. practicing coordination: changes in the structure of variance. J Mot Behav 44:471–478
pubmed: 23237469
Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML (2013) Improving finger coordination in young and elderly persons. Exp Brain Res 226:273–283
pubmed: 23411675
pmcid: 3615093
Zatsiorsky VM, Li ZM, Latash ML (1998) Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol Cybern 79:139–150
pubmed: 9791934
Zelik KE, La Scaleia V, Ivanenko YP, Lacquaniti F (2014) Can modular strategies simplify neural control of multidirectional human locomotion. J Neurophysiol 111:1686–1702
pubmed: 24431402