A protocol for accurate radiochromic film dosimetry using Radiochromic.com.

dosimetry film analysis software protocol radiochromic film

Journal

Radiology and oncology
ISSN: 1581-3207
Titre abrégé: Radiol Oncol
Pays: Poland
ID NLM: 9317213

Informations de publication

Date de publication:
10 Aug 2021
Historique:
received: 24 06 2021
accepted: 01 07 2021
entrez: 12 8 2021
pubmed: 13 8 2021
medline: 21 9 2021
Statut: epublish

Résumé

Radiochromic films have many applications in radiology and radiation therapy. Generally, the dosimetry system for radiochromic film dosimetry is composed of radiochromic films, flatbed scanner, and film analysis software. The purpose of this work is to present the effectiveness of a protocol for accurate radiochromic film dosimetry using Radiochromic.com as software for film analysis. Procedures for image acquisition, lot calibration, and dose calculation are explained and analyzed. Radiochromic.com enables state-of-the-art models and corrections for radiochromic film dosimetry, such as the Multigaussian model for multichannel film dosimetry, and lateral, inter-scan, and re-calibration corrections of the response. The protocol presented here provides accurate dose results by mitigating the sources of uncertainty that affect radiochromic film dosimetry. Appropriate procedures for film and scanner handling in combination with Radiochromic.com as software for film analysis make easy and accurate radiochromic film dosimetry feasible.

Sections du résumé

BACKGROUND BACKGROUND
Radiochromic films have many applications in radiology and radiation therapy. Generally, the dosimetry system for radiochromic film dosimetry is composed of radiochromic films, flatbed scanner, and film analysis software. The purpose of this work is to present the effectiveness of a protocol for accurate radiochromic film dosimetry using Radiochromic.com as software for film analysis.
MATERIALS AND METHODS METHODS
Procedures for image acquisition, lot calibration, and dose calculation are explained and analyzed. Radiochromic.com enables state-of-the-art models and corrections for radiochromic film dosimetry, such as the Multigaussian model for multichannel film dosimetry, and lateral, inter-scan, and re-calibration corrections of the response.
RESULTS RESULTS
The protocol presented here provides accurate dose results by mitigating the sources of uncertainty that affect radiochromic film dosimetry.
CONCLUSIONS CONCLUSIONS
Appropriate procedures for film and scanner handling in combination with Radiochromic.com as software for film analysis make easy and accurate radiochromic film dosimetry feasible.

Identifiants

pubmed: 34384012
pii: raon-2021-0034
doi: 10.2478/raon-2021-0034
pmc: PMC8366735
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

369-378

Informations de copyright

© 2021 Ignasi Méndez, Juan José Rovira-Escutia, Bozidar Casar, published by Sciendo.

Références

Crijns W, Maes F, van der Heide UA, V den Heuvel F. Calibrating page sized Gafchromic EBT3 films. Med Phys 2013; 40: 012102. doi: 10.1118/1.4771960
doi: 10.1118/1.4771960
Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, et al. Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. Med Phys 1998; 25: 2093115. doi: 10.1118/1.598407
doi: 10.1118/1.598407
Rink A, Vitkin IA, Jaffray DA. Energy dependence (75 kVp to 18 MV) of radiochromic films assessed using a real-time optical dosimeter. Med Phys 2007; 34: 458-63. doi: 10.1118/1.2431425
doi: 10.1118/1.2431425
Richter C, Pawelke J, Karsch L, Woithe J. Energy dependence of EBT-1 radiochromic film response for photon (10 kVp–15 MVp) and electron beams (6–18 MeV) readout by a flatbed scanner. Med Phys 2009; 36: 5506-14. doi: 10.1118/1.3253902
doi: 10.1118/1.3253902
Arjomandy B, Tailor R, Anand A, Sahoo N, Gillin M, Prado K, et al. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Med Phys 2010; 37: 1942-7. doi: 10.1118/1.3253902
doi: 10.1118/1.3253902
Lindsay P, Rink A, Ruschin M, Jaffray D. Investigation of energy dependence of EBT and EBT-2 Gafchromic film. Med Phys 2010; 37: 571-6. doi: 10.1118/1.3291622
doi: 10.1118/1.3291622
Massillon-JL G, Chiu-Tsao S, Domingo-Munoz I, Chan M. Energy Dependence of the new Gafchromic EBT3 film: dose response curves for 50 KV, 6 and 15 MV x-ray beams. Int J Radiat Oncol Biol Phys 2012; 1: 60-5. doi: 10.4236/ ijmpcero.2012.12008
doi: 10.4236/ijmpcero.2012.12008
Bekerat H, Devic S, DeBlois F, Singh K, Sarfehnia A, Seuntjens J, et al. Improving the energy response of external beam therapy (EBT) GafChromic dosimetry films at low energies (≤ 100 keV). Med Phys 2014; 41: 022101. doi: 10.1118/1.4860157
doi: 10.1118/1.4860157
León -Marroquín EY, Lárraga-Gutiérrez JM, Herrera-González JA, Camacho-López MA, Villarreal Barajas JE, Garcıá -Garduño OA. Investigation of EBT3 radiochromic film’s response to humidity. J Appl Clin Med Phys 2018; 19: 283-90. doi: 10.1002/acm2.12337
doi: 10.1002/acm2.12337
Niroomand-Rad A, Chiu-Tsao ST, Grams MP, Lewis DF, Soares CG, Van Battum LJ, et al. Report of AAPM Task Group 235 radiochromic film dosimetry: an update to TG-55. Med Phys 2020; 47: 5986-6025. doi: 10.1002/ mp.14497
doi: 10.1002/mp.14497
Lozares S, Font JA, Gandía A, Campos A, Flamarique S, Ibáñez R, et al. In vivo dosimetry in low-voltage IORT breast treatments with XR-RV3 radiochromic film. Phys Med 2021; 81: 173-81. doi: 10.1016/j.ejmp.2020.12.011
doi: 10.1016/j.ejmp.2020.12.011
McCabe BP, Speide l MA, Pike TL, Van Lysel MS. Calibration of Gafchromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner. Med Phys 2011; 38: 1919-30. doi: 10.1118/1.3560422
doi: 10.1118/1.3560422
Lárraga-Gutiérrez JM, Garcıá -Garduño OA, Treviño-Palacios C, Herrera-González JA. Evaluation of a led-based flatbed document scanner for radiochromic film dosimetry in transmission mode. Phys Med 2018; 47: 86-91. doi: 10.1016/j.ejmp.2018.02.010
doi: 10.1016/j.ejmp.2018.02.010
González-López A, Vera-S ánchez JA, Ruiz-Morales C. The incidence of the different sources of noise on the uncertainty in radiochromic film dosimetry using single channel and multichannel methods. Phys Med Biol 2017; 62: N525-36. doi: 10.1088/1361-6560/aa8f74
doi: 10.1088/1361-6560/aa8f74
Méndez I, Šljivić Ž, Hudej R, Jenko A, Casar B. Grid patterns, spatial inter-scan variations and scanning reading repeatability in radiochromic film dosimetry. Phys Med 2016; 32: 1072-81.
Battum L van, Huizenga H, Verdaa sdonk R, Heukelom S. How flatbed scanners upset accurate film dosimetry. Phys Med Biol 2015; 61: 625-49. doi: 10.1088/0031-9155/61/2/625.
doi: 10.1088/0031-9155/61/2/625
Lewis D, Chan MF. Correcting lat eral response artifacts from flatbed scanners for radiochromic film dosimetry. Med Phys 2015; 42: 416-29.doi: 10.1118/1.4903758.
doi: 10.1118/1.4903758
Lewis D, Devic S. Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system. Med Phys 2015; 42: 5692-701. doi: 10.1118/1.4929563
doi: 10.1118/1.4929563
Schoenfeld AA, Poppinga D, Harde r D, Doerner KJ, Poppe B. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers. Phys Med Biol 2014; 59: 3575-97.doi: 10.1088/0031-9155/59/13/3575
doi: 10.1088/0031-9155/59/13/3575
Alnawaf H, Yu PK, Butson M. Comparison of Epson scanner quality for radiochromic film evaluation. J Appl Clin Med Phys 2012; 13: 3957. doi: 10.1120/jacmp.v13i5.3957
doi: 10.1120/jacmp.v13i5.3957
Papaconstadopoulos P, Hegyi G, S euntjens J, Devic S. A protocol for EBT3 radiochromic film dosimetry using reflection scanning. Med Phys 2014; 41: 122101. doi: 10.1118/1.4901308
doi: 10.1118/1.4901308
Ramos L, Perez Azorin JF. Comment on “A protocol for EBT3 radiochromic film dosimetry using reflection dosimetry using scanning” [Med Phys 41(12), 122101 (6pp.) (2014)]. Med Phys 2015; 42: 2096-7. doi: 10.1118/1.4914853
doi: 10.1118/1.4914853
Méndez I, Polšak A, Hudej R, Casar B. The multigaussian method: a new approach to mitigating spatial heterogeneities with multichannel radiochromic film dosimetry. Phys Med Biol 2018; 63: 175013.
Hartmann B, Martišıḱ ová M, Jäkel O. Homogeneity of Gafchromic EBT2 film. Med Phys 2010; 37: 1753-6. doi: 10.1118/1.3368601
doi: 10.1118/1.3368601
Andrés C, del Castillo A, Tortosa R, Alonso D, Barquero R. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med Phys 2010; 37: 6271-8. doi: 10.1118/1.3512792
doi: 10.1118/1.3512792
Girard F, Bouchard H, Lacroix F. Reference dosimetry using radiochromic film. J Appl Clin Med Phys 2012; 13: 3994. doi: 10.1120/jacmp.v13i6.3994
doi: 10.1120/jacmp.v13i6.3994
Rink A, Lewis DF, Varma S, Vitkin IA, Ja ffray DA. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium. Med Phys 2008; 35: 4545-55. doi: 10.1118/1.2975483
doi: 10.1118/1.2975483
Bouchard H, Lacroix F, Beaudoin G, Carrier J-F, Kawrakow I. On the characterization and uncertainty analysis of radiochromic film dosimetry. Med Phys 2009; 36: 1931-46. doi: 10.1118/1.3121488
doi: 10.1118/1.3121488
Van Hoof SJ, Granton PV, Landry G, Podesta M, Verhaegen F. Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2. Phys Med Biol 2012; 57: 4353–68. doi: 10.1088/0031-9155/57/13/4353
doi: 10.1088/0031-9155/57/13/4353
Paelinck L, De Neve W, De Wagter C. Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry. Phys Med Biol 2007; 52: 231-42. doi: 10.1088/0031-9155/52/1/015
doi: 10.1088/0031-9155/52/1/015
Ferreira B, Lopes M, Capela M. Evaluation of an Epson flatbed scanner to read Gafchromic EBT films for radiation dosimetry. Phys Med Biol 2009; 54: 1073-85. doi: 10.1088/0031-9155/54/4/017
doi: 10.1088/0031-9155/54/4/017
Schoenfeld AA, Wieker S, Harder D, Poppe B. The origin of the flatbed scanner artifacts in radiochromic film dosimetry-key experiments and theoretical descriptions. Phys Med Biol 2016; 61: 7704-24. doi: 10.1088/00319155/61/21/7704
doi: 10.1088/00319155/61/21/7704
Butson MJ, Cheung T, Yu P. Evaluation of the magnitude of EBT Gafchromic film polarization effects. Australas Phys Eng Sci Med 2009; 32: 21-5. doi: 10.1007/BF03178624
doi: 10.1007/BF03178624
Palmer AL, Bradley DA, Nisbet A. Evaluat ion and mitigation of potential errors in radiochromic film dosimetry due to film curvature at scanning. J Appl Clin Med Phys 2015; 16: 5141. doi: 10.1120/jacmp.v16i2.5141
doi: 10.1120/jacmp.v16i2.5141
Dreindl R, Georg D, Stock M. Radiochromic film dosimetry: considerations on precision and accuracy for EBT2 and EBT3 type films. Z Med Phys 2014; 24: 153-63. doi: 10.1016/j.zemedi.2013.08.002
doi: 10.1016/j.zemedi.2013.08.002
Devic S, Aldelaijan S, Mohammed H, Tomic N, Liang LH, DeBlois F, et al. Absorption spectra time evolution of EBT-2 model Gafchromic film. Med Phys 2010; 37: 2207-14. doi: 10.1118/1.3378675
doi: 10.1118/1.3378675
Ruiz-Morales C, Vera-Sánchez JA, Gonzále z-López A. On the re-calibration process in radiochromic film dosimetry. Phys Med 2017; 42: 67-75. doi: 10.1016/j.ejmp.2017.08.013
doi: 10.1016/j.ejmp.2017.08.013
Méndez I, Hartman V, Hudej R, Strojnik A, Casar B. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method. Med Phys 2013; 40: 011720. doi: 10.1118/1.4772075
doi: 10.1118/1.4772075
Vera-Sánchez JA, Ruiz-Morales C, González-Ló pez A. Monte Carlo uncertainty analysis of dose estimates in radiochromic film dosimetry with single-channel and multichannel algorithms. Phys Med 2018; 47: 23-33. doi: 10.1016/j.ejmp.2018.02.006
doi: 10.1016/j.ejmp.2018.02.006
Casar B, Gershkevitsh E, Mendez I, Jurković S, Huq MS. A novel method for the determination of field output factors and output correction factors for small static fields for six diodes and a microdiamond detector in megavoltage photon beams. Med Phys 2019; 46: 944-63. doi: 10.1002/mp.13318
doi: 10.1002/mp.13318
Casar B, Gershkevitsh E, Mendez I, Jurković S, Saiful Huq M. Output correction factors for small static fields in megavoltage photon beams for seven ionization chambers in two orientations – perpendicular and parallel. Med Phys 2020; 47: 242-59. doi: 10.1002/mp.13894
doi: 10.1002/mp.13894

Auteurs

Ignasi Méndez (I)

Department for dosimetry and quality of radiological procedures, Institute of Oncology Ljubljana, Ljubljana, Slovenia.

Juan José Rovira-Escutia (JJ)

Centro Nacional de Dosimetría, INGESA, Valencia, Spain.

Bozidar Casar (B)

Department for dosimetry and quality of radiological procedures, Institute of Oncology Ljubljana, Ljubljana, Slovenia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH