Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis.
Antibacterial activity
Chemical composition
Essential oils
Eucalyptus
Hierarchical Cluster Analysis (HCA)
Otitis
Principal Component Analysis (PCA)
Journal
BMC complementary medicine and therapies
ISSN: 2662-7671
Titre abrégé: BMC Complement Med Ther
Pays: England
ID NLM: 101761232
Informations de publication
Date de publication:
12 Aug 2021
12 Aug 2021
Historique:
received:
22
09
2020
accepted:
15
07
2021
entrez:
13
8
2021
pubmed:
14
8
2021
medline:
17
12
2021
Statut:
epublish
Résumé
The chemical composition and biological activity of Eucalyptus essential oils have been studied extensively (EOs). A few of them were tested for antibacterial effectiveness against otitis strains. The chemical composition and antibacterial activity of the EOs of eight Tunisian Eucalyptus species were assessed in the present study. Hydrodistillation was used to extract EOs from the dried leaves of eight Eucalyptus species: Eucalyptus accedens, Eucalyptus punctata, Eucalyptus robusta, Eucalyptus bosistoana, Eucalyptus cladocalyx, Eucalyptus lesouefii, Eucalyptus melliodora and Eucalyptus wandoo. They are assessed by GC/MS and GC/FID and evaluated for antibacterial activity using agar diffusion and broth microdilution techniques against three bacterial isolates (Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae) and three reference bacteria strains (Pseudomonas aeruginosa, ATTC 9027; Staphylococcus aureus, ATCC 6538; and Escherichia coli, ATCC 8739). Furthermore, the selected twenty-one major compounds and all values of the inhibition zone diameters were subjected to further statistical analysis using PCA and HCA. The EO yields of the studied Eucalyptus species range from 1.4 ± 0.4% to 5.2 ± 0.3%. Among all the species studied, E. lesouefii had the greatest mean percentage of EOs. The identification of 128 components by GC (RI) and GC/MS allowed for 93.6% - 97.7% of the total oil to be identified. 1,8-cineole was the most abundant component found, followed by α-pinene, p-cymene, and globulol. The chemical components of the eight EOs, extracted from the leaves of Eucalyptus species, were clustered into seven groups using PCA and HCA analyses, with each group forming a chemotype. The PCA and HCA analyses of antibacterial activity, on the other hand, identified five groups. The oils of E. melliodora, E. bosistoana, and E. robusta show promise as antibiotic alternatives in the treatment of otitis media.
Sections du résumé
BACKGROUND
BACKGROUND
The chemical composition and biological activity of Eucalyptus essential oils have been studied extensively (EOs). A few of them were tested for antibacterial effectiveness against otitis strains. The chemical composition and antibacterial activity of the EOs of eight Tunisian Eucalyptus species were assessed in the present study.
METHODS
METHODS
Hydrodistillation was used to extract EOs from the dried leaves of eight Eucalyptus species: Eucalyptus accedens, Eucalyptus punctata, Eucalyptus robusta, Eucalyptus bosistoana, Eucalyptus cladocalyx, Eucalyptus lesouefii, Eucalyptus melliodora and Eucalyptus wandoo. They are assessed by GC/MS and GC/FID and evaluated for antibacterial activity using agar diffusion and broth microdilution techniques against three bacterial isolates (Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae) and three reference bacteria strains (Pseudomonas aeruginosa, ATTC 9027; Staphylococcus aureus, ATCC 6538; and Escherichia coli, ATCC 8739). Furthermore, the selected twenty-one major compounds and all values of the inhibition zone diameters were subjected to further statistical analysis using PCA and HCA.
RESULTS
RESULTS
The EO yields of the studied Eucalyptus species range from 1.4 ± 0.4% to 5.2 ± 0.3%. Among all the species studied, E. lesouefii had the greatest mean percentage of EOs. The identification of 128 components by GC (RI) and GC/MS allowed for 93.6% - 97.7% of the total oil to be identified. 1,8-cineole was the most abundant component found, followed by α-pinene, p-cymene, and globulol. The chemical components of the eight EOs, extracted from the leaves of Eucalyptus species, were clustered into seven groups using PCA and HCA analyses, with each group forming a chemotype. The PCA and HCA analyses of antibacterial activity, on the other hand, identified five groups.
CONCLUSION
CONCLUSIONS
The oils of E. melliodora, E. bosistoana, and E. robusta show promise as antibiotic alternatives in the treatment of otitis media.
Identifiants
pubmed: 34384412
doi: 10.1186/s12906-021-03379-y
pii: 10.1186/s12906-021-03379-y
pmc: PMC8359536
doi:
Substances chimiques
Anti-Bacterial Agents
0
Oils, Volatile
0
Plant Oils
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
209Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s).
Références
Sebei K, Sakouhi F, Herchi W, Khouja M, Boukhchina S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol Res. 2015;48(1):7.
pubmed: 25654423
pmcid: 25654423
Bignell CM, Dunlop PJ, Brophy JJ, Fookes CJR. Volatile Leaf Oils of some South-western and Southern Australian Species of the Genus Eucalyptus (Series I). Part XIV. Subgenus Monocalyptus. Flavour Fragr J. 1997;12(3):177–183.
Van Hellemont J. Compendium de Phytothérapie. Association Pharmaceutique Belge; 1986. https://books.google.tn/books?id=bSI7xgEACAAJ
Pino JA, Marbot R, Quert R, García H. Study of essential oils of Eucalyptus resinifera Smith, E. tereticornis Smith and Corymbia maculata (Hook.) K. D. Hill & L. A. S. Johnson, grown in Cuba. Flavour Fragr J. 2002;17(1):1–4. doi: https://doi.org/10.1002/ffj.1026
Bockstael K, Aerschot A. Antimicrobial resistance in bacteria. Open Med. 2009;4(2):141–55.
Serwecińska L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water. 2020;12(12):3313.
Elaissi A, Rouis Z, Salem NAB, et al. Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement Altern Med. 2012;12(1):81.
pubmed: 22742534
pmcid: 22742534
Horváth G, Ács K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: a review: Essential oils in the treatment of respiratory tract diseases. Flavour Fragr J. 2015;30(5):331–41.
pubmed: 32313366
pmcid: 32313366
Brochot A, Guilbot A, Haddioui L, Roques C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiologyopen. 2017;6(4):e00459.
Luís Â, Duarte A, Gominho J, Domingues F, Duarte AP. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crops Prod. 2016;79:274–82.
Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health. 2017;10(5):586–92.
pubmed: 28162962
pmcid: 28162962
Jarrar N, Abu-Hijleh A, Adwan K. Antibacterial activity of Rosmarinus officinalis L. alone and in combination with cefuroxime against methicillin–resistant Staphylococcus aureus. Asian Pac J Trop Med. 2010;3(2):121–123.
Merghni A, Noumi E, Hadded O, et al. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb Pathog. 2018;118:74–80.
pubmed: 29522803
pmcid: 29522803
Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules. 2016;21(7):836.
Boukef, M.K. Médecine traditionnelle et pharmacopée, Agence de Coopération Culturelle et Technique, France; 1986.
Rusan M, Klug TE, Ovesen T. An overview of the microbiology of acute ear, nose and throat infections requiring hospitalisation. Eur J Clin Microbiol Infect Dis. 2009;28(3):243–51.
pubmed: 18830726
pmcid: 18830726
Amna Islam MA, Munawerah Fahad AM. Acute Otitis Media: Identification of Causative Pathogens with Antimicrobial Comparative Efficacy. J App Pharm. 2015;7(4):205.
Nwabuisi C, Ologe FE. Pathogenic agents of chronic suppurative otitis media in Ilorin. Nigeria East Afr Med J. 2002;79(4):202–5.
pubmed: 12625677
pmcid: 12625677
Wang L, Qiao X, Ai L, Zhai J, Wang X. Isolation of antimicrobial resistant bacteria in upper respiratory tract infections of patients. 3 Biotech. 2016;6(2):166.
Pettigrew MM, Laufer AS, Gent JF, Kong Y, Fennie KP, Metlay JP. Upper Respiratory Tract Microbial Communities, Acute Otitis Media Pathogens, and Antibiotic Use in Healthy and Sick Children. Appl Environ Microbiol. 2012;78(17):6262–70.
pubmed: 22752171
pmcid: 22752171
Pang B, Swords WE. Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections. Infect Immun. 2017;85(9):e01070-e1116.
pubmed: 28674033
pmcid: 28674033
Bruyette DS, Lorenz MD. Otitis externa and otitis media: diagnostic and medical aspects. Semin Vet Med Surg Small Anim. 1993;8(1):3–9.
pubmed: 8456201
pmcid: 8456201
DeAntonio R, Yarzabal J-P, Cruz JP, Schmidt JE, Kleijnen J. Epidemiology of otitis media in children from developing countries: A systematic review. Int J Pediatr Otorhinolaryngol. 2016;85:65–74.
pubmed: 27240499
pmcid: 27240499
Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Int J STD AIDS. 2015;386(9995):743–800.
Monasta L, Ronfani L, Marchetti F, et al. Burden of Disease Caused by Otitis Media: Systematic Review and Global Estimates. PLOS ONE. 2012;7(4):e36226.
Avnstorp MB, Homøe P, Bjerregaard P, Jensen RG. Chronic suppurative otitis media, middle ear pathology and corresponding hearing loss in a cohort of Greenlandic children. Int J Pediatr Otorhinolaryngol. 2016;83:148–53.
pubmed: 26968069
pmcid: 26968069
World Health Organization. (2018). Addressing the rising prevalence of hearing loss. World Health Organization. https://apps.who.int/iris/handle/10665/260336 . Licence: CC BY-NC-SA 3.0 IGO
Bardaweel S, Hudaib M, Tawaha K. Evaluation of Antibacterial, Antifungal, and Anticancer Activities of Essential Oils from Six Species of Eucalyptus. J Essent Oil Bear Pl. 2014;17(6):1165–74.
Lin W, Jianbo S, Wanzhong L, et al. Protective effect of eucalyptus oil on pulmonary destruction and inflammation in chronic obstructive pulmonary disease (COPD) in rats. J Med Plants Res. 2017;11(6):129–36.
Soyingbe O, Makhafola T, Mahlobo B, Salahdeen H, Lawal OA, Opoku A. Antiasthma activity of Eucalyptus grandis essential oil and its main constituent: Vasorelaxant effect on aortic smooth muscle isolated from nomotensive rats. J Exp Appl Anim Sci. 2017;2:211.
Elaissi A, Chraif I, Bannour F, et al. Contribution to the Qualitative and Quantitative Study of Seven Eucalyptus Species Essential Oil Harvested of Hajeb’s Layoun Arboreta (Tunisia). J Essent Oil Bear Pl. 2007;10(1):15–25.
Elaissi A, Medini H, Marzouki H, et al. Variation in Volatile Leaf Oils of Twelve Eucalyptus Species Harvested from Hajeb Layoun Arboreta (Tunisia). Chem Biodivers. 2010;7(3):705–16.
pubmed: 20232333
pmcid: 20232333
Elaissi A, Marzouki H, Medini H, et al. Variation in Volatile Leaf Oils of 13 Eucalyptus Species Harvested from Souinet Arboreta (Tunisia). Chem Biodivers. 2010;7(4):909–21.
pubmed: 20397231
pmcid: 20397231
Elaissi A, Medini H, Larbi Khouja M, et al. Variation in Volatile Leaf Oils of Eleven Eucalyptus Species Harvested from Korbous Arboreta (Tunisia). Chem Biodivers. 2010;7(7):1841–54.
pubmed: 20658674
pmcid: 20658674
Elaissi A, Medini H, Khouja ML, et al. Variation in Volatile Leaf Oils of Five Eucalyptus Species Harvested from Jbel Abderrahman Arboreta (Tunisia). Chem Biodivers. 2011;8(2):352–61.
pubmed: 21337507
pmcid: 21337507
Elaissi A, Medini H, Simmonds M, et al. Variation in Volatile Leaf Oils of Seven Eucalyptus Species Harvested from Zerniza Arboreta (Tunisia). Chem Biodivers. 2011;8(2):362–72.
pubmed: 21337508
pmcid: 21337508
Elaissi A, Moumni S, Roeleveld K, Khouja ML. Chemical Characterization of Five Tunisian Eucalyptus Essential Oils Species. Chem Biodivers. 2020;17(1):e1900378.
Elaissi A, Salah KH, Mabrouk S, Larbi KM, Chemli R, Harzallah-Skhiri F. Antibacterial activity and chemical composition of 20 Eucalyptus species’ essential oils. Food Chem. 2011;129(4):1427–34.
Elaissi A, Rouis Z, Mabrouk S, et al. Correlation Between Chemical Composition and Antibacterial Activity of Essential Oils from Fifteen Eucalyptus Species Growing in the Korbous and Jbel Abderrahman Arboreta (North East Tunisia). Molecules. 2012;17(3):3044–57.
pubmed: 22410416
pmcid: 22410416
Council of Europe. European pharmacopoeia. 10th ed. Strasbourg: Council of Europe; 2020.
John Wiley & Sons. Wiley Registry
Ponce AG, Fritz R, Valle C, Roura SI. Antimicrobial activity of essential oils on native microbial population of organic Swiss Chard. LWT - Food Sci Technol. 2003;36:679–84.
Schwarz S, Silley P, Simjee S, et al. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother. 2010;65(4):601–4.
pubmed: 20181573
pmcid: 20181573
Moumni S, Elaissi A, Trabelsi A, et al. Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complement Med Ther. 2020;20(1):103.
pubmed: 32245466
pmcid: 32245466
Schaechter M, Medoff G, Eisenstein BI, Flandrois J-P. Microbiologie et pathologie infectieuse (Français) Broché – 12 février 1999. Paris: De Boeck University; 1999.
Dramane S, Koné M, Kamanzi K. Evaluation des Activités Antimicrobiennes et Anti-Radicaux Libres de Quelques Taxons Bioactifs de Côte D’ivoire. Eur J Sci Res. 2010;40:307–17.
Foudil-Cherif Y, Meklati BY, Verzera A, Mondello L, Dugo G. Chemical Examination of Essential Oils from the Leaves of Nine Eucalyptus Species Growing in Algeria. J Essent Oil Res. 2000;12(2):186–91.
Fouad R, Bousta D, Lalami AEO, et al. Chemical Composition and Herbicidal Effects of Essential Oils of Cymbopogon citratus (DC) Stapf, Eucalyptus cladocalyx, Origanum vulgare L and Artemisia absinthium L. cultivated in Morocco. J Essent Oil Bear Pl. 2015;18(1):112–123.
Farah A, Fechtal M, Chaouch A. Effet de l’hybridation interspécifique sur la teneur et la composition chimique des huiles essentielles d’eucalyptus cultivés au Maroc. Biotechnol Agron Soc Environ. 2002;6(3):7163–9.
Ben Hassine D, Ben Ismail H, Chokri J, Khouja ML, Abderrabba M. Chemical composition of some Tunisian Eucalyptus essential oils as obtained by hydrodistillation using Clevenger type apparatus. Biosci Biotech Re Asia. 2010;7:647–56.
Zrira SS, Benjilali BB, Fechtal MM, Richard HH. Essential Oils of Twenty-seven Eucalyptus Species Grown in Morocco. J Essent Oil Res. 1992;4(3):259–64.
Bignell CM, Dunlop PJ, Brophy JJ, Jackson JF. Volatile Leaf Oils of some Queensland and Northern Australian Species of the Genus Eucalyptus. (Series II). Part I. Subgenus Symphyomyrtus, Section Adnataria: (a) Series Oliganthae, (b) Series Ochrophloiae, (c) Series Moluccanae, (d) Series Polyanthemae, (e) Series Paniculatae, (f) Series Melliodorae and (g) Series Porantheroideae. Flavour Fragr J. 1997;12(1):19–27.
Esfahanianfard N, Sefidkon F, Bakhshi Khaniki G. Seasonal variation in the essential oil content and composition of three Eucalyptus species (Eucalyptus melliodora Cunn. ex Schauer, E. kingsmilli Maiden & Blakely and E. dundasii Maiden) from South Iran. Iran J of Med Arom Plants. 2011;27:97–126.
Cimanga K, Kambu K, Tona L, et al. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol. 2002;79(2):213–20.
pubmed: 11801384
pmcid: 11801384
Bignell CM, Dunlop PJ, Brophy JJ. Volatile leaf oils of some Queensland and northern Australian species of the genus Eucalyptus (series II). Part II. Subgenera (a) Blakella, (b) Corymbia, (c) Unnamed, (d) Idiogenes, (e) Monocalyptus and (f) Symphyomyrtus. Flavour Fragr J. 1997;12(4):277–284.
Filomeno CA, Barbosa LCA, Pereira JL, Pinheiro AL, Fidêncio PH, Montanari RM. The Chemical Diversity of Eucalyptus spp. Essential Oils from Plants Grown in Brazil. Chem Biodivers. 2016;13(12):1656–1665.
Sartorelli P, Marquioreto AD, Amaral-Baroli A, Lima MEL, Moreno PRH. Chemical composition and antimicrobial activity of the essential oils from two species of Eucalyptus. Phytother Res. 2007;21(3):231–3.
pubmed: 17154233
pmcid: 17154233
Liu XC, Liu QZ, Shi WP, Liu ZL. Evaluation of insecticidal activity of the essential oil of Eucalyptus robusta Smith leaves and its constituent compound against overwintering Cacopsylla chinensis (Yang et Li) (Hemiptera: Psyllidae). J Entomol Zool Stud. 2014;2(4):27–31.
Benayache S, Benayache F, Benyahia S, Chalchat J-C, Garry R-P. Leaf Oils of some Eucalyptus Species Growing in Algeria. J Essent Oil Res. 2001;13(3):210–3.
Southwell IA. Variation in the leaf oil of Eucalyptus punctata. Phytochemistry. 1973;12(6):1341–3.
Dellacassa E, Menéndez P, Moyna P, Soler E. Chemical composition of Eucalyptus essential oils grown in Uruguay. Flavour Fragr J. 1990;5(2):91–5.
Bignell CM, Dunlop PJ, Brophy JJ. Volatile leaf oils of some south-western and southern Australian species of the genus Eucalyptus (series I). Part XVIII. A. Subgenus monocalyptus. B. Subgenus symphyomyrtus: (i) section guilfoyleanae; (ii) section bisectaria, series accedentes, series occidentales, series levispermae, series loxophlebae, series macrocarpae, series orbifoliae, series calycogonae; (iii) section dumaria, series incrassatae and series ovulares. Flavour Fragr J. 1997;12(6):423–432.
Bouzabata A, Bighelli A, Abed L, Casanova J, Tomi F. Composition and Chemical Variability of Eucalyptus bosistoana Essential Oil from Algerian Sahara. Nat. Prod. Commun. 2014;9(5):1934578X1400900.
Faria JMS, Lima AS, Mendes MD, et al. Eucalyptus From Mata Experimental do Escaroupim (Portugal): Evaluation Of The Essential Oil Composition From Sixteen Species. Acta Hortic. 2011;925:61–6.
Moudachirou M, Gbenou JD, Chalchat JC, Chabard JL, Lartigue C. Chemical composition of essential oils of Eucalyptus from Benin: Eucalyptus citriodora and E. camaldulensis. Influence of location, harvest time, storage of plants and time of steam distillation. J Essent Oil Res. 1999;11:109–118.
Bhatti HN, Iqbal Z, Chatha SAS, Bukhari IH. Variations in Oil Potential and Chemical Composition of Eucalyptus crebra Among Different Districts of Punjab-Pakistan. Int J Agric Biol. 2007;9(1):136–8.
Doran JC, Bell RE. Influence of non-genetic factors on yield of monoterpenes in leaf oils of Eucalyptus camaldulensis. New For. 1994;8(4):363–79.
Barra A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009;4(8):1934578X0900400.
Padovan A, Webb H, Mazanec R, et al. Association genetics of essential oil traits in Eucalyptus loxophleba: explaining variation in oil yield. Mol Breeding 2017;37.
Echeverrigaray S, Agostini G, Atti-Serfini L, Paroul N, Pauletti GF, dos Santos AC. Correlation between the chemical and genetic relationships among commercial thyme cultivars. J Agric Food Chem. 2001;49(9):4220–3.
pubmed: 11559114
pmcid: 11559114
Angioni A, Barra A, Cereti E, et al. chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J Agric Food Chem. 2004;52(11):3530–5. https://doi.org/10.1021/jf049913t .
doi: 10.1021/jf049913t
pubmed: 15161226
pmcid: 15161226
Filomeno CA, Barbosa LCA, Teixeira RR, et al. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind Crops Prod. 2017;109:374–383.
Alfian Z, Taufik M, Marpaung H, Sibarani IJ. Analysis of composition and sineol determination of eucalyptus oil (Eucalyptus Robusta) from PT. Toba Pulp Lestari Used Gc-Ms Method. Int J Appl Chem (IJAC). 2018;14(3):255–262.
Elaissi A, Chemli R, Harzallah-Skhiri F, Khouja ML. Variation in Volatile Leaf Oils of Seven Eucalyptus Species Harvested from Zerniza Arboreta (Tunisia). Chem Biodivers. 2011;8(2):362–72.
pubmed: 21337508
pmcid: 21337508
Elaissi Ameur, Medini Hanene, Rouis Zied, Khouja Mohamed Larbi, Chemli Rachid, Harzallah-Skhiri Fethia. Impact of geographic’s variation On The essential oil yield and chemical composition of three Eucalyptus species acclimated In Tunisia. J Exp Biol Agric Sci. 2015:324–336.
Nikbakht MR, Rahimi-Nasrabadi M, Ahmadi F, Gandomi H, Abbaszadeh S, Batooli H. The Chemical Composition and in vitro Antifungal Activities of Essential Oils of Five Eucalyptus Species. J Essent Oil Bear Pl. 2015;18(3):666–77.
Griffin SG, Wyllie SG, Markham JL, Leach DN. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J. 1999;14(5):322–32.
Pitarokili D, Tzakou O, Loukis A, Harvala C. Volatile Metabolites from Salvia fruticosa as Antifungal Agents in Soilborne Pathogens. J Agric Food Chem. 2003;51(11):3294–301.
pubmed: 12744657
pmcid: 12744657
Sonboli A, Babakhani B, Mehrabian AR. Antimicrobial Activity of Six Constituents of Essential Oil from Salvia. Z Naturforsch. 2006;(61c):160–164.
Hendry ER, Worthington T, Conway BR, Lambert PA. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother. 2009;64(6):1219–25.
pubmed: 19837714
pmcid: 19837714
Miguel M, Gago C, Antunes M, et al. Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species. Medicines. 2018;5(3):61.
Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol. 2003;95(4):853–60.
pubmed: 12969301
pmcid: 12969301
Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother. 2001;47(5):565–73.
pubmed: 11328766
pmcid: 11328766
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol. 2008;46(2):446–75.
pubmed: 17996351
pmcid: 17996351
Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;3:12.
pubmed: 22291693
pmcid: 22291693
de Aguiar FC, Solarte AL, Tarradas C, et al. Antimicrobial activity of selected essential oils against Streptococcus suis isolated from pigs. Microbiologyopen. 2018;7(6):e00613.
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid Based Complement Alternat Med. 2016;2016.3012462
Ezzeddine NBH-B, Abdelkéfi MM, Aissa RB, Chaabouni MM. Antibacterial Screening of Origanum majorana L. Oil from Tunisia. J Essent Oil Res. 2001;13(4):295–297.
Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crops Prod. 2014;62:250–64.
Karl K, Alexander P, Bernard I, Hildegunde W, Norbert W. Antibacterial and Antifungal Properties of Essential Oil Components. J Essent Oil Res. 1989;1(3):119–28.