GDF11 enhances therapeutic functions of mesenchymal stem cells for angiogenesis.
Angiogenesis
Endothelial cells
GDF11
Ischemia
Mesenchymal stem cells
Journal
Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581
Informations de publication
Date de publication:
12 08 2021
12 08 2021
Historique:
received:
01
04
2021
accepted:
18
07
2021
entrez:
13
8
2021
pubmed:
14
8
2021
medline:
26
8
2021
Statut:
epublish
Résumé
The efficacy of stem cell therapy for ischemia repair has been limited by low cell retention rate. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family, which has multiple effects on development, physiology and diseases. The objective of the study is to investigate whether GDF11 could affect the efficacy of stem cell transplantation. We explored the effects of GDF11 on proangiogenic activities of mesenchymal stem cells (MSCs) for angiogenic therapy in vitro and in vivo. Mouse bone marrow-derived MSCs were transduced with lentiviral vector to overexpress GDF11 (MSC Our study demonstrated an essential role of GDF11 in promoting therapeutic functions of MSCs for ischemic diseases by enhancing MSC viability, mobility, and angiogenic paracrine functions.
Sections du résumé
BACKGROUND
The efficacy of stem cell therapy for ischemia repair has been limited by low cell retention rate. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family, which has multiple effects on development, physiology and diseases. The objective of the study is to investigate whether GDF11 could affect the efficacy of stem cell transplantation.
METHODS
We explored the effects of GDF11 on proangiogenic activities of mesenchymal stem cells (MSCs) for angiogenic therapy in vitro and in vivo.
RESULTS
Mouse bone marrow-derived MSCs were transduced with lentiviral vector to overexpress GDF11 (MSC
CONCLUSION
Our study demonstrated an essential role of GDF11 in promoting therapeutic functions of MSCs for ischemic diseases by enhancing MSC viability, mobility, and angiogenic paracrine functions.
Identifiants
pubmed: 34384486
doi: 10.1186/s13287-021-02519-y
pii: 10.1186/s13287-021-02519-y
pmc: PMC8359078
doi:
Substances chimiques
Bone Morphogenetic Proteins
0
Gdf11 protein, mouse
0
Growth Differentiation Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Retracted Publication
Langues
eng
Sous-ensembles de citation
IM
Pagination
456Commentaires et corrections
Type : RetractionIn
Informations de copyright
© 2021. The Author(s).
Références
Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 2010;12:87–117.
doi: 10.1146/annurev-bioeng-070909-105309
Weil BR, Suzuki G, Leiker MM, Fallavollita JA, Canty JM. Comparative efficacy of intracoronary allogeneic mesenchymal stem cells and cardiosphere-derived cells in swine with hibernating myocardium. Circ Res. 2015;117:634–44.
doi: 10.1161/CIRCRESAHA.115.306850
Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.
doi: 10.1016/j.jacc.2009.06.055
Choudhery MS, Badowski M, Muise A, Harris DT. Utility of cryopreserved umbilical cord tissue for regenerative medicine. Curr Stem Cell Res Ther. 2013;8:370–80.
doi: 10.2174/1574888X11308050004
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle. 2019;10:501–16.
doi: 10.1002/jcsm.12416
Gremmels H, Teraa M, Quax PH, den Ouden K, Fledderus JO, Verhaar MC. Neovascularization capacity of mesenchymal stromal cells from critical limb ischemia patients is equivalent to healthy controls. Mol Ther. 2014;22:1960–70.
doi: 10.1038/mt.2014.161
Zhu D, Cheng K. Cardiac cell therapy for heart repair: should the cells be left out? Cells. 2021;10:641.
doi: 10.3390/cells10030641
Samak M, Hinkel R. Stem cells in cardiovascular medicine: historical overview and future prospects. Cells. 2019;8:1530.
doi: 10.3390/cells8121530
Copland IB, Lord-Dufour S, Cuerquis J, Coutu DL, Annabi B, Wang E, et al. Improved autograft survival of mesenchymal stromal cells by plasminogen activator inhibitor 1 inhibition. Stem Cells. 2009;27:467–77.
doi: 10.1634/stemcells.2008-0520
Ma Q, Xia X, Tao Q, Lu K, Shen J, Xu Q, et al. Profound actions of an agonist of growth hormone-releasing hormone on angiogenic therapy by mesenchymal stem cells. Arterioscler Thromb Vasc Biol. 2016;36:663–72.
doi: 10.1161/ATVBAHA.116.307126
Hu X, Xu Y, Zhong Z, Wu Y, Zhao J, Wang Y, et al. A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization. Circ Res. 2016;118:970–83.
doi: 10.1161/CIRCRESAHA.115.307516
Steiner D, Lampert F, Stark GB, Finkenzeller G. Effects of endothelial cells on proliferation and survival of human mesenchymal stem cells and primary osteoblasts. J Orthop Res. 2012;30:1682–9.
doi: 10.1002/jor.22130
Cook BD, Ferrari G, Pintucci G, Mignatti P. Tgf-beta1 induces rearrangement of flk-1-ve-cadherin-beta-catenin complex at the adherens junction through vegf-mediated signaling. J Cell Biochem. 2008;105:1367–73.
doi: 10.1002/jcb.21935
Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.
doi: 10.1210/er.2003-0027
Sproul EP, Argraves WS. A cytokine axis regulates elastin formation and degradation. Matrix Biol. 2013;32:86–94.
doi: 10.1016/j.matbio.2012.11.004
Pardali K, Moustakas A. Actions of tgf-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer. 2007;1775:21–62.
doi: 10.1016/j.bbcan.2006.06.004
Harper SC, Brack A, MacDonnell S, Franti M, Olwin BB, Bailey BA, et al. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circ Res. 2016;118:1143–50 (discussion 1150).
Zhang Y, Wei Y, Liu D, Liu F, Li X, Pan L, et al. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget. 2017;8:81604–16.
doi: 10.18632/oncotarget.20258
Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4.
doi: 10.1126/science.1251141
Rochette L, Zeller M, Cottin Y, Vergely C. Growth and differentiation factor 11 (gdf11): functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther. 2015;156:26–33.
doi: 10.1016/j.pharmthera.2015.10.006
Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–39.
doi: 10.1016/j.cell.2013.04.015
Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. Restoring systemic gdf11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344:649–52.
doi: 10.1126/science.1251152
Zhang C, Lin Y, Liu Q, He J, Xiang P, Wang D, et al. Growth differentiation factor 11 promotes differentiation of mscs into endothelial-like cells for angiogenesis. J Cell Mol Med. 2020;24:8703–17.
doi: 10.1111/jcmm.15502
Zhao Y, Zhu J, Zhang N, Liu Q, Wang Y, Hu X, et al. Gdf11 enhances therapeutic efficacy of mesenchymal stem cells for myocardial infarction via yme1l-mediated opa1 processing. Stem Cells Transl Med. 2020;9:1257–71.
doi: 10.1002/sctm.20-0005
Eslaminejad MB, Nadri S. Murine mesenchymal stem cell isolated and expanded in low and high density culture system: Surface antigen expression and osteogenic culture mineralization. Vitro Cell Dev Biol Anim. 2009;45:451–9.
doi: 10.1007/s11626-009-9198-1
Sena E, van der Worp H, Howells D, Macleod M. How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci. 2007;30:433–9.
doi: 10.1016/j.tins.2007.06.009
Suh J, Kim N-K, Lee S-H, Eom J-H, Lee Y, Park J-C, et al. Gdf11 promotes osteogenesis as opposed to mstn, and follistatin, a mstn/gdf11 inhibitor, increases muscle mass but weakens bone. Proc Natl Acad Sci. 2020;117:4910–20.
doi: 10.1073/pnas.1916034117
Duran J, Troncoso MF, Lagos D, Ramos S, Marin G, Estrada M. Gdf11 modulates ca(2+)-dependent smad2/3 signaling to prevent cardiomyocyte hypertrophy. Int J Mol Sci. 2018;19:1508.
doi: 10.3390/ijms19051508
Su H, Liao J, Wang Y, Chen K, Lin C, Lee I, et al. Exogenous gdf11 attenuates non-canonical tgf-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2019;114:20.
doi: 10.1007/s00395-019-0728-z
Zhang YH, Cheng F, Du XT, Gao JL, Xiao XL, Li N, et al. Gdf11/bmp11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells. Oncotarget. 2016;7:12063–74.
doi: 10.18632/oncotarget.7642
Zhang J, Li Y, Li H, Zhu B, Wang L, Guo B, et al. Gdf11 improves angiogenic function of epcs in diabetic limb ischemia. Diabetes. 2018;67:2084–95.
doi: 10.2337/db17-1583
McNally EM. Questions and answers about myostatin, gdf11, and the aging heart. Circ Res. 2016;118:6–8.
doi: 10.1161/CIRCRESAHA.115.307861
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, et al. Biochemistry and biology of gdf11 and myostatin: similarities, differences, and questions for future investigation. Circ Res. 2016;118:1125–41 (discussion 1142).
Zhang YE. Non-smad pathways in tgf-beta signaling. Cell Res. 2009;19:128–39.
doi: 10.1038/cr.2008.328
Demontis F, Patel VK, Swindell WR, Perrimon N. Intertissue control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep. 2014;7:1481–94.
doi: 10.1016/j.celrep.2014.05.001
Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the pi3k/akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng Part B Rev. 2013;19:516–28.
doi: 10.1089/ten.teb.2012.0672
Toulany M, Rodemann H. Phosphatidylinositol 3-kinase/akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 2015;35:180–90.
doi: 10.1016/j.semcancer.2015.07.003
Keppler-Noreuil K, Parker V, Darling T, Martinez-Agosto J. Somatic overgrowth disorders of the pi3k/akt/mtor pathway & therapeutic strategies. Am J Med Genet C Semin Med Genet. 2016;172:402–21.
doi: 10.1002/ajmg.c.31531