Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause.
Adolescent
Adrenal Cortex Neoplasms
/ genetics
Adrenocortical Adenoma
/ genetics
Adult
Aldosterone
/ biosynthesis
Female
GTP-Binding Protein alpha Subunits
/ genetics
GTP-Binding Protein alpha Subunits, Gq-G11
/ genetics
Humans
Hyperaldosteronism
/ pathology
Male
Menopause
/ metabolism
Middle Aged
Pregnancy
Puberty
/ metabolism
beta Catenin
/ genetics
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
23
07
2020
accepted:
29
06
2021
pubmed:
14
8
2021
medline:
15
10
2021
entrez:
13
8
2021
Statut:
ppublish
Résumé
Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.
Identifiants
pubmed: 34385710
doi: 10.1038/s41588-021-00906-y
pii: 10.1038/s41588-021-00906-y
pmc: PMC9082578
mid: NIHMS1796697
doi:
Substances chimiques
CTNNB1 protein, human
0
GNA11 protein, human
0
GNAQ protein, human
0
GTP-Binding Protein alpha Subunits
0
beta Catenin
0
Aldosterone
4964P6T9RB
GTP-Binding Protein alpha Subunits, Gq-G11
EC 3.6.5.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1360-1372Subventions
Organisme : British Heart Foundation
ID : SP/08/002/24118
Pays : United Kingdom
Organisme : British Heart Foundation
ID : FS/11/35/28871
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K501050/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL144847
Pays : United States
Organisme : British Heart Foundation
ID : PG/16/40/32137
Pays : United Kingdom
Organisme : British Heart Foundation
ID : FS/19/50/34566
Pays : United Kingdom
Organisme : British Heart Foundation
ID : PG/07/085/23349
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S006869/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 106995/Z/15/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K020455/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0801265
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : British Heart Foundation
ID : FS/14/75/31134
Pays : United Kingdom
Organisme : BLRD VA
ID : I01 BX004681
Pays : United States
Organisme : British Heart Foundation
ID : FS/14/12/30540
Pays : United Kingdom
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Choi, M. et al. K
pubmed: 21311022
pmcid: 3371087
doi: 10.1126/science.1198785
Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440–444 (2013).
pubmed: 23416519
doi: 10.1038/ng.2550
Scholl, U. I. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. 45, 1050–1054 (2013).
pubmed: 23913001
pmcid: 3876926
doi: 10.1038/ng.2695
Azizan, E. A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 1055–1060 (2013).
pubmed: 23913004
doi: 10.1038/ng.2716
Azizan, E. A. et al. Microarray, qPCR and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J. Clin. Endocrinol. Metab. 97, E819–E829 (2012).
pubmed: 22442279
doi: 10.1210/jc.2011-2965
Monticone, S. et al. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Mol. Cell Endocrinol. 411, 146–154 (2015).
pubmed: 25958045
pmcid: 4474471
doi: 10.1016/j.mce.2015.04.022
Akerstrom, T. et al. Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas. Endocr. Relat. Cancer 22, 735–744 (2015).
pubmed: 26285814
doi: 10.1530/ERC-15-0321
De Sousa, K. et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 75, 1034–1044 (2020).
pubmed: 32114847
doi: 10.1161/HYPERTENSIONAHA.119.14177
Nanba, K. et al. Targeted molecular characterization of aldosterone-producing adenomas in White Americans. J. Clin. Endocrinol. Metab. 103, 3869–3876 (2018).
pubmed: 30085035
pmcid: 6179168
doi: 10.1210/jc.2018-01004
Wu, V. C. et al. The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Sci. Rep. 7, 39121 (2017).
pubmed: 28102204
pmcid: 5244399
doi: 10.1038/srep39121
Nishimoto, K. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc. Natl Acad. Sci. USA 112, E4591–E4599 (2015).
pubmed: 26240369
pmcid: 4547250
doi: 10.1073/pnas.1505529112
Williams, T. A. et al. Visinin-like 1 is upregulated in aldosterone-producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis. Hypertension 59, 833–839 (2012).
pubmed: 22331379
doi: 10.1161/HYPERTENSIONAHA.111.188532
Akerstrom, T. et al. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci. Rep. 6, 19546 (2016).
pubmed: 26815163
pmcid: 4728393
doi: 10.1038/srep19546
Tadjine, M., Lampron, A., Ouadi, L. & Bourdeau, I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin. Endocrinol. (Oxf.) 68, 264–270 (2008).
Omata, K. et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 72, 874–880 (2018).
pubmed: 30354720
doi: 10.1161/HYPERTENSIONAHA.118.11086
Teo, A. E. et al. Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations. N. Engl. J. Med. 373, 1429–1436 (2015).
pubmed: 26397949
pmcid: 4612399
doi: 10.1056/NEJMoa1504869
Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N. & Gutkind, J. S. Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol. Cell Biol. 12, 4687–4693 (1992).
pubmed: 1328859
pmcid: 360395
Gutowski, S. et al. Antibodies to the alpha q subfamily of guanine nucleotide-binding regulatory protein alpha subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones. J. Biol. Chem. 266, 20519–20524 (1991).
pubmed: 1657928
doi: 10.1016/S0021-9258(18)54955-3
Backman, S. et al. RNA sequencing provides novel insights into the transcriptome of aldosterone producing adenomas. Sci. Rep. 9, 6269 (2019).
pubmed: 31000732
pmcid: 6472367
doi: 10.1038/s41598-019-41525-2
Wiese, M. et al. The beta-catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner. Oncotarget 8, 27300–27313 (2017).
pubmed: 28460484
pmcid: 5432336
doi: 10.18632/oncotarget.15934
Zhou, L. et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/beta-catenin signaling. J. Am. Soc. Nephrol. 26, 107–120 (2015).
pubmed: 25012166
doi: 10.1681/ASN.2014010085
Doghman, M., Cazareth, J. & Lalli, E. The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. J. Clin. Endocrinol. Metab. 93, 3222–3225 (2008).
pubmed: 18544621
doi: 10.1210/jc.2008-0247
Zhou, T. et al. CTNNB1 knockdown inhibits cell proliferation and aldosterone secretion through inhibiting Wnt/beta-catenin signaling in H295R cells. Technol. Cancer Res. Treat. 19, 1533033820979685 (2020).
pubmed: 33287648
pmcid: 7727057
Jeppesen, J. V. et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J. Clin. Endocrinol. Metab. 97, E1524–E1531 (2012).
pubmed: 22659248
pmcid: 3410279
doi: 10.1210/jc.2012-1427
Breen, S. M. et al. Ovulation involves the luteinizing hormone-dependent activation of G(q/11) in granulosa cells. Mol. Endocrinol. 27, 1483–1491 (2013).
pubmed: 23836924
pmcid: 3753423
doi: 10.1210/me.2013-1130
Gazdar, A. F. et al. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 50, 5488–5496 (1990).
pubmed: 2386954
Tissier, F. et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 65, 7622–7627 (2005).
pubmed: 16140927
doi: 10.1158/0008-5472.CAN-05-0593
Boulkroun, S. et al. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 152, 4753–4763 (2011).
pubmed: 21971159
doi: 10.1210/en.2011-1205
Shaikh, L. H. et al. LGR5 activates noncanonical Wnt signaling and inhibits aldosterone production in the human adrenal. J. Clin. Endocrinol. Metab. 100, E836–E844 (2015).
pubmed: 25915569
pmcid: 4454794
doi: 10.1210/jc.2015-1734
Zhou, J. et al. Transcriptome pathway analysis of pathological and physiological aldosterone-producing human tissues. Hypertension 68, 1424–1431 (2016).
pubmed: 27777363
doi: 10.1161/HYPERTENSIONAHA.116.08033
Taylor, M. J. et al. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J. Clin. Invest. 130, 83–93 (2020).
pubmed: 31738186
doi: 10.1172/JCI127429
Leng, S. et al. beta-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat. Commun. 11, 1680 (2020).
pubmed: 32245949
pmcid: 7125176
doi: 10.1038/s41467-020-15332-7
Schwindinger, W. F., Francomano, C. A. & Levine, M. A. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune–Albright syndrome. Proc. Natl Acad. Sci. USA 89, 5152–5156 (1992).
pubmed: 1594625
pmcid: 49247
doi: 10.1073/pnas.89.11.5152
Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).
pubmed: 1944469
doi: 10.1056/NEJM199112123252403
Idowu, B. D. et al. A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology 50, 691–704 (2007).
pubmed: 17493233
doi: 10.1111/j.1365-2559.2007.02676.x
Vasilev, V. et al. McCune–Albright syndrome: a detailed pathological and genetic analysis of disease effects in an adult patient. J. Clin. Endocrinol. Metab. 99, E2029–E2038 (2014).
pubmed: 25062453
doi: 10.1210/jc.2014-1291
Rey, R. A. et al. Unexpected mosaicism of R201H-GNAS1 mutant-bearing cells in the testes underlie macro-orchidism without sexual precocity in McCune–Albright syndrome. Hum. Mol. Genet. 15, 3538–3543 (2006).
pubmed: 17101633
doi: 10.1093/hmg/ddl430
Wu, D. Q., Lee, C. H., Rhee, S. G. & Simon, M. I. Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J. Biol. Chem. 267, 1811–1817 (1992).
pubmed: 1309799
doi: 10.1016/S0021-9258(18)46018-8
Ayturk, U. M. et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am. J. Hum. Genet. 98, 789–795 (2016).
pubmed: 27058448
pmcid: 4833432
doi: 10.1016/j.ajhg.2016.03.009
Van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).
pubmed: 21083380
pmcid: 3107972
doi: 10.1056/NEJMoa1000584
Shirley, M. D. et al. Sturge–Weber syndrome and port-wine stains caused by somatic mutation in Gnaq. N. Engl. J. Med. 368, 1971–1979 (2013).
pubmed: 23656586
pmcid: 3749068
doi: 10.1056/NEJMoa1213507
Thomas, A. C. et al. Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J. Invest. Dermatol. 136, 770–778 (2016).
pubmed: 26778290
pmcid: 4803466
doi: 10.1016/j.jid.2015.11.027
Simon, D. P. & Hammer, G. D. Adrenocortical stem and progenitor cells: implications for adrenocortical carcinoma. Mol. Cell Endocrinol. 351, 2–11 (2012).
pubmed: 22266195
pmcid: 3288146
doi: 10.1016/j.mce.2011.12.006
Berthon, A. et al. WNT/beta-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum. Mol. Genet. 23, 889–905 (2014).
pubmed: 24087794
doi: 10.1093/hmg/ddt484
Lerario, A. M., Moraitis, A. & Hammer, G. D. Genetics and epigenetics of adrenocortical tumors. Mol. Cell Endocrinol. 386, 67–84 (2014).
pubmed: 24220673
doi: 10.1016/j.mce.2013.10.028
Wang, J. J., Peng, K. Y., Wu, V. C., Tseng, F. Y. & Wu, K. D. CTNNB1 mutation in aldosterone producing adenoma. Endocrinol. Metab. (Seoul) 32, 332–338 (2017).
doi: 10.3803/EnM.2017.32.3.332
Assie, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607–612 (2014).
pubmed: 24747642
doi: 10.1038/ng.2953
Jakobsen, J. N., Santoni-Rugiu, E., Grauslund, M., Melchior, L. & Sorensen, J. B. Concomitant driver mutations in advanced EGFR-mutated non-small-cell lung cancer and their impact on erlotinib treatment. Oncotarget 9, 26195–26208 (2018).
pubmed: 29899852
pmcid: 5995236
doi: 10.18632/oncotarget.25490
Gainor, J. F. et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res. 19, 4273–4281 (2013).
pubmed: 23729361
doi: 10.1158/1078-0432.CCR-13-0318
Nanba, K. et al. Genetic characteristics of aldosterone-producing adenomas in Blacks. Hypertension 73, 885–892 (2019).
pubmed: 30739536
doi: 10.1161/HYPERTENSIONAHA.118.12070
Pignatti, E. et al. Beta-catenin causes adrenal hyperplasia by blocking zonal transdifferentiation. Cell Rep. 31, 107524 (2020).
pubmed: 32320669
pmcid: 7281829
doi: 10.1016/j.celrep.2020.107524
Vouillarmet, J. et al. Aldosterone-producing adenoma with a somatic KCNJ5 mutation revealing APC-dependent familial adenomatous polyposis. J. Clin. Endocrinol. Metab. 101, 3874–3878 (2016).
pubmed: 27648962
doi: 10.1210/jc.2016-1874
Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).
pubmed: 25693567
pmcid: 4405175
doi: 10.1038/nature14221
Yeh, I. et al. Combined activation of MAP kinase pathway and beta-catenin signaling cause deep penetrating nevi. Nat. Commun. 8, 644 (2017).
pubmed: 28935960
pmcid: 5608693
doi: 10.1038/s41467-017-00758-3
Piaggio, F. et al. Secondary somatic mutations in G-protein-related pathways and mutation signatures in uveal melanoma. Cancers (Basel) 11, 1688 (2019).
doi: 10.3390/cancers11111688
Chen, X. et al. The melanoma-linked ‘redhead’ MC1R influences dopaminergic neuron survival. Ann. Neurol. 81, 395–406 (2017).
pubmed: 28019657
pmcid: 6085083
doi: 10.1002/ana.24852
Cavlan, D., Storr, H. L., Berney, D., Evagora, C. & King, P. J. Adrenal pigmentation in PPNAD is a result of melanin deposition and associated with upregulation of the melanocortin 1 receptor. Endocr. Abstr. 38, 154 (2015).
Binder, J. X. et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database (Oxf.) 2014, bau012 (2014).
doi: 10.1093/database/bau012
de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).
pubmed: 21727895
doi: 10.1038/nature10337
Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes Dev. 30, 1389–1394 (2016).
pubmed: 27313319
pmcid: 4926862
doi: 10.1101/gad.277756.116
Yi, H., Wang, Y., Kavallaris, M. & Wang, J. Y. Lgr4-mediated potentiation of Wnt/β-catenin signaling promotes MLL leukemogenesis via an Rspo3/Wnt3a-Gnaq pathway in leukemic stem cells. Blood 122, 887 (2013).
doi: 10.1182/blood.V122.21.887.887
Carter, J. M. et al. CTNNB1 mutations and estrogen receptor expression in neuromuscular choristoma and its associated fibromatosis. Am. J. Surg. Pathol. 40, 1368–1374 (2016).
pubmed: 27259010
doi: 10.1097/PAS.0000000000000673
Crago, A. M. et al. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer 54, 606–615 (2015).
pubmed: 26171757
pmcid: 4548882
doi: 10.1002/gcc.22272
Maria, A. G. et al. Mosaicism for KCNJ5 causing early-onset primary aldosteronism due to bilateral adrenocortical hyperplasia. Am. J. Hypertens. 33, 124–130 (2020).
pubmed: 31637427
doi: 10.1093/ajh/hpz172
Zhang, E. D. et al. Mutation spectrum in GNAQ and GNA11 in Chinese uveal melanoma. Precis. Clin. Med. 2, 213–220 (2019).
doi: 10.1093/pcmedi/pbz021
pubmed: 35693877
pmcid: 8985776
Gerstenblith, M. R., Goldstein, A. M., Fargnoli, M. C., Peris, K. & Landi, M. T. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Hum. Mutat. 28, 495–505 (2007).
pubmed: 17279550
doi: 10.1002/humu.20476
Eguchi, K. et al. An adverse pregnancy-associated outcome due to overlooked primary aldosteronism. Intern. Med. 53, 2499–2504 (2014).
pubmed: 25366010
doi: 10.2169/internalmedicine.53.2762
Saner-Amigh, K. et al. Elevated expression of luteinizing hormone receptor in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 91, 1136–1142 (2006).
pubmed: 16332935
doi: 10.1210/jc.2005-1298
Gagnon, N. et al. Genetic characterization of GnRH/LH-responsive primary aldosteronism. J. Clin. Endocrinol. Metab. 103, 2926–2935 (2018).
pubmed: 29726953
doi: 10.1210/jc.2018-00087
Albiger, N. M. et al. A case of primary aldosteronism in pregnancy: do LH and GNRH receptors have a potential role in regulating aldosterone secretion? Eur. J. Endocrinol. 164, 405–412 (2011).
pubmed: 21330483
doi: 10.1530/EJE-10-0879
Berthon, A., Drelon, C. & Val, P. Pregnancy, primary aldosteronism, and somatic CTNNB1 mutations. N. Engl. J. Med. 374, 1493–1494 (2016).
pubmed: 27074082
Murtha, T. D., Carling, T. & Scholl, U. I. Pregnancy, primary aldosteronism, and somatic CTNNB1 mutations. N. Engl. J. Med. 374, 1492–1493 (2016).
pubmed: 27074081
doi: 10.1056/NEJMc1514508
Burton, T. J. et al. Evaluation of the sensitivity and specificity of (11)C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s adenomas. J. Clin. Endocrinol. Metab. 97, 100–109 (2012).
pubmed: 22112805
doi: 10.1210/jc.2011-1537
Letavernier, E. et al. Blood pressure outcome of adrenalectomy in patients with primary hyperaldosteronism with or without unilateral adenoma. J. Hypertens. 26, 1816–1823 (2008).
pubmed: 18698217
doi: 10.1097/HJH.0b013e3283060f0c
Funder, J. W. et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 3266–3281 (2008).
pubmed: 18552288
doi: 10.1210/jc.2008-0104
Fernandes-Rosa, F. L. et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 54, 354–361 (2014).
doi: 10.1161/HYPERTENSIONAHA.114.03419
Akerstrom, T. et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS ONE 7, e41926 (2012).
pubmed: 22848660
pmcid: 3407065
doi: 10.1371/journal.pone.0041926
Gomez-Sanchez, C. E. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol. Cell Endocrinol. 383, 111–117 (2014).
pubmed: 24325867
doi: 10.1016/j.mce.2013.11.022
Bustin, S. A. Why the need for qPCR publication guidelines? The case for MIQE. Methods 50, 217–226 (2010).
pubmed: 20025972
doi: 10.1016/j.ymeth.2009.12.006