mRBioM: An Algorithm for the Identification of Potential mRNA Biomarkers From Complete Transcriptomic Profiles of Gastric Adenocarcinoma.

biomarkers complete transcriptomic profiles generalization ability prognosis sample classification

Journal

Frontiers in genetics
ISSN: 1664-8021
Titre abrégé: Front Genet
Pays: Switzerland
ID NLM: 101560621

Informations de publication

Date de publication:
2021
Historique:
received: 12 03 2021
accepted: 06 05 2021
entrez: 13 8 2021
pubmed: 14 8 2021
medline: 14 8 2021
Statut: epublish

Résumé

In this work, an algorithm named mRBioM was developed for the identification of potential mRNA biomarkers (PmBs) from complete transcriptomic RNA profiles of gastric adenocarcinoma (GA). mRBioM initially extracts differentially expressed (DE) RNAs (mRNAs, miRNAs, and lncRNAs). Next, mRBioM calculates the total information amount of each DE mRNA based on the coexpression network, including three types of RNAs and the protein-protein interaction network encoded by DE mRNAs. Finally, PmBs were identified according to the variation trend of total information amount of all DE mRNAs. Four PmB-based classifiers without learning and with learning were designed to discriminate the sample types to confirm the reliability of PmBs identified by mRBioM. PmB-based survival analysis was performed. Finally, three other cancer datasets were used to confirm the generalization ability of mRBioM. mRBioM identified 55 PmBs (41 upregulated and 14 downregulated) related to GA. The list included thirteen PmBs that have been verified as biomarkers or potential therapeutic targets of gastric cancer, and some PmBs were newly identified. Most PmBs were primarily enriched in the pathways closely related to the occurrence and development of gastric cancer. Cancer-related factors without learning achieved sensitivity, specificity, and accuracy of 0.90, 1, and 0.90, respectively, in the classification of the GA and control samples. Average accuracy, sensitivity, and specificity of the three classifiers with machine learning ranged within 0.94-0.98, 0.94-0.97, and 0.97-1, respectively. The prognostic risk score model constructed by 4 PmBs was able to correctly and significantly ( GA-related PmBs have high specificity and sensitivity and strong prognostic risk prediction. MRBioM has also good generalization. These PmBs may have good application prospects for early diagnosis of GA and may help to elucidate the mechanism governing the occurrence and development of GA. Additionally, mRBioM is expected to be applied for the identification of other cancer-related biomarkers.

Identifiants

pubmed: 34386038
doi: 10.3389/fgene.2021.679612
pmc: PMC8354214
doi:

Types de publication

Journal Article

Langues

eng

Pagination

679612

Informations de copyright

Copyright © 2021 Dong, Rao, Du, Gao, Lv, Wang and Zhang.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

J Clin Lab Anal. 2020 Dec;34(12):e23511
pubmed: 32862489
Sci Rep. 2020 May 7;10(1):7714
pubmed: 32382009
Cell Death Dis. 2019 Feb 15;10(3):156
pubmed: 30770789
Nat Commun. 2017 Aug 18;8(1):289
pubmed: 28819095
PLoS One. 2012;7(12):e52804
pubmed: 23285187
Theranostics. 2018 Feb 2;8(5):1286-1300
pubmed: 29507620
J Cell Biochem. 2012 Aug;113(8):2696-703
pubmed: 22441875
Cancer Biother Radiopharm. 2020 Dec 1;:
pubmed: 33259730
Med Sci Monit. 2018 Feb 05;24:718-726
pubmed: 29398692
Cancer Med. 2016 Dec;5(12):3544-3554
pubmed: 27925454
N Engl J Med. 2015 Feb 26;372(9):793-5
pubmed: 25635347
Med Sci Monit. 2019 May 13;25:3537-3541
pubmed: 31080234
Int J Cancer. 2018 Jun 15;142(12):2578-2588
pubmed: 29363109
Phys Chem Chem Phys. 2018 Nov 28;20(46):29018-29037
pubmed: 30255886
Biomed Res Int. 2015;2015:789516
pubmed: 26339642
Sci Rep. 2014 Aug 15;4:6088
pubmed: 25124853
Arch Med Sci. 2019 Apr 05;16(5):1196-1206
pubmed: 32864009
Oncogene. 2019 Mar;38(11):1876-1891
pubmed: 30385854
Curr Treat Options Gastroenterol. 2004 Apr;7(2):149-157
pubmed: 15010029
Ann Surg Oncol. 2016 Feb;23 Suppl 2:S206-13
pubmed: 25752890
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Cancer Cell. 2021 Jan 11;39(1):68-82.e9
pubmed: 33186519
Front Med (Lausanne). 2020 Jul 07;7:320
pubmed: 32733904
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
N Engl J Med. 2004 Apr 29;350(18):1828-37
pubmed: 15115829
Mol Cancer Res. 2019 Sep;17(9):1945-1957
pubmed: 31217166
Mol Cell Biochem. 2020 Jun;469(1-2):9-19
pubmed: 32314193
Cell Physiol Biochem. 2018;51(2):991-1000
pubmed: 30466107
Cell Death Dis. 2021 Jan 14;12(1):83
pubmed: 33446634
J Cancer. 2019 Nov 1;10(27):6837-6847
pubmed: 31839818
Mol Aspects Med. 2015 Nov;45:37-46
pubmed: 26022941
Cell Commun Signal. 2018 Jun 8;16(1):27
pubmed: 29884238
Cancer Manag Res. 2020 Dec 22;12:13051-13069
pubmed: 33376399
Int J Clin Exp Pathol. 2019 Apr 01;12(4):1194-1203
pubmed: 31933934
Pathol Oncol Res. 2017 Oct;23(4):785-791
pubmed: 28078605
Hepatology. 2020 Jan;71(1):130-147
pubmed: 31148183
Jpn J Cancer Res. 1997 Oct;88(10):947-52
pubmed: 9414655
BMC Med Res Methodol. 2017 Apr 7;17(1):53
pubmed: 28388943
Kaohsiung J Med Sci. 2020 May;36(5):311-317
pubmed: 31868996
J Clin Oncol. 2009 Mar 10;27(8):1160-7
pubmed: 19204204
Oncol Lett. 2020 Mar;19(3):1673-1682
pubmed: 32194659
Biomed Res Int. 2020 Oct 19;2020:5171242
pubmed: 33134380
Br J Cancer. 2020 Mar;122(5):668-679
pubmed: 31857720
Biomolecules. 2020 Aug 22;10(9):
pubmed: 32842649
Tumour Biol. 2017 Jul;39(7):1010428317714626
pubmed: 28671042
Oncogene. 2013 Sep 5;32(36):4231-42
pubmed: 23045269
J Gastroenterol Hepatol. 2021 Jul;36(7):1877-1888
pubmed: 33295056
Cell. 2009 Jan 23;136(2):215-33
pubmed: 19167326
PLoS One. 2019 Sep 26;14(9):e0223225
pubmed: 31557260
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
Mol Cancer. 2019 Mar 28;18(1):45
pubmed: 30922402
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30
pubmed: 26742998
World J Gastroenterol. 2020 Jun 14;26(22):3024-3033
pubmed: 32587446
Cell Death Dis. 2018 Aug 29;9(9):880
pubmed: 30158589
Gene. 2011 Dec 10;489(2):63-9
pubmed: 21925246
Cancer Med. 2020 Apr;9(7):2551-2563
pubmed: 32017451
Oncol Res. 2020 Feb 7;28(1):41-49
pubmed: 31558184
J Exp Clin Cancer Res. 2019 Aug 1;38(1):334
pubmed: 31370857
Oncotarget. 2016 Nov 29;7(48):78726-78735
pubmed: 27783989
Mol Cell Biochem. 2012 Apr;363(1-2):93-9
pubmed: 22143536
Oncotarget. 2016 Jun 28;7(26):39511-39526
pubmed: 27078844
Bioinformatics. 2017 Mar 15;33(6):854-862
pubmed: 27993780
PLoS One. 2018 Aug 27;13(8):e0202856
pubmed: 30148861
Breast Cancer Res. 2017 Jun 21;19(1):73
pubmed: 28637482
Blood Cells Mol Dis. 2018 Feb;68:185-191
pubmed: 28126395
Front Genet. 2020 Aug 11;11:715
pubmed: 32849774
CA Cancer J Clin. 2018 Nov;68(6):394-424
pubmed: 30207593
Clin Gastroenterol Hepatol. 2020 Mar;18(3):534-542
pubmed: 31362118
Eur Rev Med Pharmacol Sci. 2020 May;24(10):5481-5492
pubmed: 32495883
Onco Targets Ther. 2018 May 01;11:2475-2487
pubmed: 29760557
J Clin Invest. 2007 Oct;117(10):3107-17
pubmed: 17823654
Methods. 2014 Jun 1;67(3):282-93
pubmed: 24675401
Noncoding RNA. 2017 Feb 20;3(1):
pubmed: 29657281
IUBMB Life. 2020 Dec;72(12):2672-2685
pubmed: 33211382
Genes Chromosomes Cancer. 2006 Sep;45(9):874-81
pubmed: 16804918
Environ Toxicol. 2020 Oct;35(10):1070-1081
pubmed: 32420661
IEEE J Biomed Health Inform. 2020 Jun;24(6):1814-1822
pubmed: 31581101
Tumour Biol. 2016 Jan;37(1):503-10
pubmed: 26227221
Oncotarget. 2016 Jul 12;7(28):44185-44193
pubmed: 27283904

Auteurs

Changlong Dong (C)

Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China.

Nini Rao (N)

Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China.

Wenju Du (W)

Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China.

Fenglin Gao (F)

Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China.

Xiaoqin Lv (X)

Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China.

Guangbin Wang (G)

Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China.

Junpeng Zhang (J)

Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China.

Classifications MeSH