Mulberry fruit extract alleviates the intracellular amyloid-β oligomer-induced cognitive disturbance and oxidative stress in Alzheimer's disease model mice.
Alzheimer's disease
amyloid β-protein
anthocyanin
cognitive function
mulberry fruit extract
oligomer
Journal
Genes to cells : devoted to molecular & cellular mechanisms
ISSN: 1365-2443
Titre abrégé: Genes Cells
Pays: England
ID NLM: 9607379
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
revised:
10
08
2021
received:
19
07
2021
accepted:
11
08
2021
pubmed:
14
8
2021
medline:
14
1
2022
entrez:
13
8
2021
Statut:
ppublish
Résumé
Intracellular amyloid-β (Aβ) oligomers are key therapeutic targets because they are strongly cytotoxic and play crucial roles in the cognitive function in Alzheimer's disease (AD). Anthocyanins, polyphenolic flavonoids with antioxidant and neuroprotective properties, are potential therapeutic candidates for AD. Here, we investigated the effects of anthocyanin-enriched extracts from fruits of mulberry (Morus alba Linn.) in Thailand against the neurotoxicity of Aβ oligomers. Using the monitoring system for Aβ aggregation, we showed that the extract induced the dissociation of Aβ in cultured HEK293T cells. To investigate the effects on cognitive function, we orally administered the extract to Aβ-GFP transgenic mice (Aβ-GFP Tg), a mouse model that expresses Aβ oligomers inside neurons, and performed the novel object recognition test and passive avoidance test. Aβ-GFP Tg usually showed deficits in novel object recognition memory and reference memory compared with non-Tg, but administration of the extract improved both compared with vehicle-treated Aβ-GFP Tg. Aβ-GFP Tg exhibited lower superoxide dismutase (SOD) activity than non-Tg. However, after the administration of the extract, the SOD activity was restored. These results suggest that Thai mulberry fruit extract ameliorates cytotoxicity induced by the intracellular Aβ oligomers and may be an effective therapeutic or preventive candidate for AD.
Substances chimiques
Amyloid beta-Peptides
0
Anthocyanins
0
Plant Extracts
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
861-873Subventions
Organisme : Special strategic grant from AIST
Organisme : DAICENTER project grant from the DBT (Govt. of India)
Informations de copyright
© 2021 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Références
Amorini, A. M., Fazzina, G., Lazzarino, G., Tavazzi, B., Di Pierro, D., Santucci, R., Sinibaldi, F., Galvano, F., & Galvano, G. (2001). Activity and mechanism of the antioxidant properties of cyanidin-3-O-beta-glucopyranoside. Free Radical Research, 35(6), 953-966. https://doi.org/10.1080/10715760100301451
Ali, T., Kim, T., Rehman, S. U., Khan, M. S., Amin, F. U., Khan, M., Ikram, M., & Kim, M. O. (2018). Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 55(7), 6076-6093. https://doi.org/10.1007/s12035-017-0798-6
Andres-Lacueva, C., Shukitt-Hale, B., Galli, R. L., Jauregui, O., Lamuela-Raventos, R. M., & Joseph, J. A. (2005). Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional Neuroscience, 8(2), 111-120. https://doi.org/10.1080/10284150500078117
Baldeiras, I., Santana, I., Proença, M. T., Garrucho, M. H., Pascoal, R., Rodrigues, A., Duro, D., & Oliveira, C. R. (2008). Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer's disease. Journal of Alzheimer’s Disease, 15(1), 117-128. https://doi.org/10.3233/jad-2008-15110
Barry, A. E., Klyubin, I., Mc Donald, J. M., Mably, A. J., Farrell, M. A., Scott, M., & Rowan, M. J. (2011). Alzheimer's disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. Journal of Neuroscience, 31(20), 7259-7263. https://doi.org/10.1523/JNEUROSCI.6500-10.2011
Bieschke, J., Russ, J., Friedrich, R. P., Ehrnhoefer, D. E., Wobst, H., Neugebauer, K., & Wanker, E. E. (2010). EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proceedings of the National Academy of Science of the United States of America, 107(17), 7710-7715. https://doi.org/10.1073/pnas.0910723107
Borlikova, G. G., Trejo, M., Mably, A. J., Mc Donald, J. M., Sala Frigerio, C., Regan, C. M., Murphy, K. J., Masliah, E., & Walsh, D. M. (2013). Alzheimer brain-derived amyloid β-protein impairs synaptic remodeling and memory consolidation. Neurobiology Aging, 34(5), 1315-1327. https://doi.org/10.1016/j.neurobiolaging.2012.10.028
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel- Wissenschaft & Technologie, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Butterfield, D. A., & Boyd-Kimball, D. (2018). Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer's Disease. Journal of Alzheimer’s Disease, 62(3), 1345-1367. https://doi.org/10.3233/JAD-170543
Casadesus, G., Shukitt-Hale, B., Stellwagen, H. M., Zhu, X., Lee, H. G., Smith, M. A., & Joseph, J. A. (2004). Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutritional Neuroscience, 7(5-6), 309-316. https://doi.org/10.1080/10284150400020482
Cline, E. N., Bicca, M. A., Viola, K. L., & Klein, W. L. (2018). The amyloid-β oligomer hypothesis: Beginning of the third decade. Journal of Alzheimer’s Disease, 64(s1), S567-S610. https://doi.org/10.3233/JAD-179941
Fu, Z., Aucoin, D., Ahmed, M., Ziliox, M., Van Nostrand, W. E., & Smith, S. O. (2014). Capping of aβ42 oligomers by small molecule inhibitors. Biochemistry, 53(50), 7893-7903. https://doi.org/10.1021/bi500910b
Galli, R. L., Shukitt-Hale, B., Youdim, K. A., & Joseph, J. A. (2002). Fruit polyphenolics and brain aging: Nutritional interventions targeting age-related neuronal and behavioral deficits. Annals of the New York Academy of Sciences, 959, 128-132. https://doi.org/10.1111/j.1749-6632.2002.tb02089.x
Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In R. E. Wrolstad, T. E. Acree, H. An, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker & P. Sporns, Current Protocols in Food Analytical Chemistry (pp. F1.2.1-F1.2.13). John Wiley & Sons Inc. https://doi.org/10.1002/0471142913.faf0102s00
Hayden, E. Y., & Teplow, D. B. (2013). Amyloid β-protein oligomers and Alzheimer's disease. Alzheimer’s Research & Therapy, 5(6), 60. https://doi.org/10.1186/alzrt226
Huang, W. J., Zhang, X., & Chen, W. W. (2016). Role of oxidative stress in Alzheimer's disease. Biomedical Reports, 4(5), 519-522. https://doi.org/10.3892/br.2016.630
Jeffrey, R. A., Ch'ng, T. H., O'Dell, T. J., & Martin, K. C. (2009). Activity-dependent anchoring of importin alpha at the synapse involves regulated binding to the cytoplasmic tail of the NR1-1a subunit of the NMDA receptor. Journal of Neuroscience, 29(50), 15613-15620. https://doi.org/10.1523/JNEUROSCI.3314-09.2009
Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., & Selkoe, D. J. (2011). Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proceedings of the National Academy of Science of the United States of America, 108(14), 5819-5824. https://doi.org/10.1073/pnas.1017033108
Karpova, A., Mikhaylova, M., Bera, S., Bär, J., Reddy, P. P., Behnisch, T., Rankovic, V., Spilker, C., Bethge, P., Sahin, J., Kaushik, R., Zuschratter, W., Kähne, T., Naumann, M., Gundelfinger, E. D., & Kreutz, M. R. (2013). Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell, 152(5), 1119-1133. https://doi.org/10.1016/j.cell.2013.02.002
Krasinski, C. A., Ivancic, V. A., Zheng, Q., Spratt, D. E., & Lazo, N. D. (2018). Resveratrol sustains insulin-degrading enzyme activity toward Aβ42. ACS Omega, 3(10), 13275-13282. https://doi.org/10.1021/acsomega.8b01913
Krikorian, R., Shidler, M. D., Nash, T. A., Kalt, W., Vinqvist-Tymchuk, M. R., Shukitt-Hale, B., & Joseph, J. A. (2010). Blueberry supplementation improves memory in older adults. Journal of Agricultural and Food Chemistry, 58(7), 3996-4000. https://doi.org/10.1021/jf9029332
LaFerla, F. M., Green, K. N., & Oddo, S. (2007). Intracellular amyloid-beta in Alzheimer's disease. Nature Review of Neuroscience, 8(7), 499-509. https://doi.org/10.1038/nrn2168
Liobikas, J., Skemiene, K., Trumbeckaite, S., & Borutaite, V. (2016). Anthocyanins in cardioprotection: A path through mitochondria. Pharmacological Research, 113(Pt B), 808-815. https://doi.org/10.1016/j.phrs.2016.03.036
Ma, H., Johnson, S. L., Liu, W., DaSilva, N. A., Meschwitz, S., Dain, J. A., & Seeram, N. P. (2018). Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences, 19(2), 461-479. https://doi.org/10.3390/ijms19020461
Maher, P., Akaishi, T., & Abe, K. (2006). Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Science of the United States of America, 103(44), 16568-16573. https://doi.org/10.1073/pnas.0607822103
Marambaud, P., Zhao, H., & Davies, P. (2005). Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. Journal of Biological Chemistry, 280(45), 37377-37382. https://doi.org/10.1074/jbc.M508246200
Marcus, D. L., Thomas, C., Rodriguez, C., Simberkoff, K., Tsai, J. S., Strafaci, J. A., & Freedman, M. L. (1998). Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer's disease. Experimental Neurology, 150(1), 40-44. https://doi.org/10.1006/exnr.1997.6750
Martinez, M. C., Ochiishi, T., Majewski, M., & Kosik, K. S. (2003). Dual regulation of neuronal morphogenesis by a delta-catenin-cortactin complex and Rho. Journal of Cell Biology, 162(1), 99-111. https://doi.org/10.1083/jcb.200211025
Ochiishi, T., Doi, M., Yamasaki, K., Hirose, K., Kitamura, A., Urabe, T., & Shimura, H. (2016). Development of new fusion proteins for visualizing amyloid-beta oligomers in vivo. Scientific Reports, 6, 15. https://doi.org/10.1038/srep22712
Ochiishi, T., Kaku, M., Kiyosue, K., Doi, M., Urabe, T., Hattori, N., Shimura, H., & Ebihara, T. (2019). New Alzheimer's disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers. Scientific Reports, 9(1), 17368. https://doi.org/10.1038/s41598-019-53415-8
Omar, R. A., Chyan, Y. J., Andorn, A. C., Poeggeler, B., Robakis, N. K., & Pappolla, M. A. (1999). Increased Expression but Reduced Activity of Antioxidant Enzymes in Alzheimer's Disease. Journal of Alzheimer’s Disease, 1(3), 139-145. https://doi.org/10.3233/jad-1999-1301
Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., Mao, X., Ikeda, T., Takasaki, J.-I., Nishijo, H., Takashima, A., Teplow, D. B., Zagorski, M. G., & Yamada, M. (2012). Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. Journal of Biological Chemistry, 287(18), 14631-14643. https://doi.org/10.1074/jbc.M111.325456
Pacheco, S. M., Soares, M. S. P., Gutierres, J. M., Gerzson, M. F. B., Carvalho, F. B., Azambuja, J. H., Schetinger, M. R. C., Stefanello, F. M., & Spanevello, R. M. (2018). Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer's type. Journal of Nutritional Biochemistry, 56, 193-204. https://doi.org/10.1016/j.jnutbio.2018.02.014
Padurariu, M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W., & Stefanescu, C. (2010). Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neuroscience Letters, 469(1), 6-10. https://doi.org/10.1016/j.neulet.2009.11.033
Padurariu, M., Ciobica, A., Lefter, R., Serban, I. L., Stefanescu, C., & Chirita, R. (2013). The oxidative stress hypothesis in Alzheimer's disease. Psychiatr Danub, 25(4), 401-409.
Phan, H. T. T., Samarat, K., Takamura, Y., Azo-Oussou, A. F., Nakazono, Y., & Vestergaard, M. C. (2019). Polyphenols Modulate Alzheimer's Amyloid Beta Aggregation in a Structure-Dependent Manner. Nutrients, 11(4), 756. https://doi.org/10.3390/nu11040756
Rendeiro, C., Vauzour, D., Rattray, M., Waffo-Téguo, P., Mérillon, J. M., Butler, L. T., Williams, C. M., & Spencer, J. P. E. (2013). Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One, 8(5), e63535. https://doi.org/10.1371/journal.pone.0063535
Saura, C. A., & Valero, J. (2011). The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Reviews in the Neuroscience, 22(2), 153-169. https://doi.org/10.1515/RNS.2011.018
Schroeter, H., Bahia, P., Spencer, J. P. E., Sheppard, O., Rattray, M., Cadenas, E., Rice-Evans, C., & Williams, R. J. (2007). (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. Journal of Neurochemistry, 101(6), 1596-1606. https://doi.org/10.1111/j.1471-4159.2006.04434.x
Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., & Selkoe, D. J. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Medicine, 14(8), 837-842. https://doi.org/10.1038/nm1782
Shih, P. H., Chan, Y. C., Liao, J. W., Wang, M. F., & Yen, G. C. (2010). Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer's disease. Journal of Nutritional Biochemistry, 21(7), 598-605. https://doi.org/10.1016/j.jnutbio.2009.03.008
Singleton, V. L., & Rossi, J. L. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., & Greengard, P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8(8), 1051-1058. https://doi.org/10.1038/nn1503
Spencer, J. P. (2008). Food for thought: The role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proceedings of Nutrition Society, 67(2), 238-252. https://doi.org/10.1017/S0029665108007088
Sultana, R., Robinson, R. A. S., Di Domenico, F., Abdul, H. M., Clair, D. K. S., Markesbery, W. R., Cai, J., Pierce, W. M., & Butterfield, D. A. (2011). Proteomic identification of specifically carbonylated brain proteins in APP(NLh)/APP(NLh) × PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice model of Alzheimer disease as a function of age. Journal of Proteomics, 74(11), 2430-2440. https://doi.org/10.1016/j.jprot.2011.06.015
Tan, L., Yang, H. P., Pang, W., Lu, H., Hu, Y. D., Li, J., & Jiang, Y. G. (2014). Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice. Biomedical and Environmental Sciences, 27(3), 186-196. https://doi.org/10.3967/bes2014.007
Tarozzi, A., Morroni, F., Merlicco, A., Bolondi, C., Teti, G., Falconi, M., Cantelli-Forti, G., & Hrelia, P. (2010). Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25-35) oligomer-induced toxicity. Neuroscience Letters, 473(2), 72-76. https://doi.org/10.1016/j.neulet.2010.02.006
Thisayakorn, K., Kajsongkram, T., Khueynok, V., Sriyam, K., Pahusi, D., & Thubthimthed, S. (2018). Mulberry improved operant behavior impairment in atropine rats possibly involved beta-amyloid accumulation. Thai Journal of Pharmaceutical Science, 42(supplement issue), 51-54.
Velander, P., Wu, L., Henderson, F., Zhang, S., Bevan, D. R., & Xu, B. (2017). Natural product-based amyloid inhibitors. Biochemical Pharmacology, 139, 40-55. https://doi.org/10.1016/j.bcp.2017.04.004
Vepsäläinen, S., Koivisto, H., Pekkarinen, E., Mäkinen, P., Dobson, G., McDougall, G. J., Stewart, D., Haapasalo, A., Karjalainen, R. O., Tanila, H., & Hiltunen, M. (2013). Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer's disease. Journal of Nutritional Biochemistry, 24(1), 360-370. https://doi.org/10.1016/j.jnutbio.2012.07.006
Vingtdeux, V., Giliberto, L., Zhao, H., Chandakkar, P., Wu, Q., Simon, J. E., & Marambaud, P. (2010). AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. Journal of Biological Chemistry, 285(12), 9100-9113. https://doi.org/10.1074/jbc.M109.060061
Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., & Cole, G. M. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280(7), 5892-5901. https://doi.org/10.1074/jbc.M404751200
Zheng, Q., Kebede, M. T., Kemeh, M. M., Islam, S., Lee, B., Bleck, S. D., Wurfl, L. A., & Lazo, N. D. (2019). Inhibition of the Self-Assembly of Aβ and of Tau by Polyphenols: Mechanistic Studies. Molecules, 24(12), https://doi.org/10.3390/molecules24122316