The evolution of size-dependent competitive interactions promotes species coexistence.

coevolution coexistence intraguild predation intraspecific and interspecific competition size-dependent competition size-dependent competitive asymmetry

Journal

The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574

Informations de publication

Date de publication:
11 2021
Historique:
received: 04 03 2021
accepted: 04 08 2021
pubmed: 15 8 2021
medline: 15 12 2021
entrez: 14 8 2021
Statut: ppublish

Résumé

Theory indicates that competing species coexist in a community when intraspecific competition is stronger than interspecific competition. When body size determines the outcome of competitive interactions between individuals, coexistence depends also on how resource use and the ability to compete for these resources change with body size. Testing coexistence theory in size-structured communities, therefore, requires disentangling the effects of size-dependent competitive abilities and niche shifts. Here, we tested the hypothesis that the evolution of species- and size-dependent competitive asymmetries increased the likelihood of coexistence between interacting species. We experimentally estimated the effects of size-dependent competitive interactions on somatic growth rates of two interacting fish species, Trinidadian guppies Poecilia reticulata and killifish Rivulus hartii. We controlled for the effects of size-dependent changes in the niche at two competitive settings representing the early (allopatric) and late (sympatric) evolutionary stages of a killifish-guppy community. We fitted the growth data to a model that incorporates species- and size-dependent competitive asymmetries to test whether changes in the competitive interactions across sizes increased the likelihood of species coexistence from allopatry to sympatry. We found that guppies are competitively superior to killifish but were less so in sympatric populations. The decrease in the effects of interspecific competition on the fitness of killifish and increase in the interspecific effect on guppies' fitness increased the likelihood that sympatric guppies and killifish will coexist. However, while the competitive asymmetries between the species changed consistently between allopatry and sympatry between drainages, the magnitude of the size-dependent competitive asymmetries varied between drainages. These results demonstrate the importance of integrating evolution and trait-based interactions into the research on how species coexist.

Identifiants

pubmed: 34389988
doi: 10.1111/1365-2656.13577
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

2704-2717

Informations de copyright

© 2021 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Références

Alexander, H. J., Taylor, J. S., Wu, S. S. T., & Breden, F. (2006). Parallel evolution and vicariance in the guppy (Poecilia reticulata) over multiple spatial and temporal scales. Evolution, 60, 2352-2369. https://doi.org/10.1111/j.0014-3820.2006.tb01870.x
Anaya-Rojas, J., Bassar, R., Matthews, B., Goldberg, J., Reznick, D., & Travis, J. (2021) Character displacement through and evolutionary change in ontogenetic niche shifts. Authorea Preprints.
Anaya-Rojas, J. M., Bassar, R. D., Potter, T., Blanchette, A., Callahan, S., Framstead, N., Reznick, D., & Travis, J. (2021). Data from: The evolution of size-dependent competitive interactions promotes species coexistence. Dryad Digital Repository, https://doi.org/10.5061/dryad.4xgxd259n
Aresco, M. J., Travis, J., & MacRae, P. S. (2015). Trophic interactions of turtles in a North Florida lake food web: Prevalence of omnivory. Copeia, 103, 343-356. https://doi.org/10.1643/CE-13-130
Auer, S. K., Dick, C. A., Metcalfe, N. B., & Reznick, D. N. (2018). Metabolic rate evolves rapidly and in parallel with the pace of life history. Nature Communications, 9, 1-6. https://doi.org/10.1038/s41467-017-02514-z
Balfour, R. A., Buddle, C. M., Rypstra, A. L., Walker, S. E., & Marshall, S. D. (2003). Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecological Entomology, 28, 25-30. https://doi.org/10.1046/j.1365-2311.2002.00486.x
Bassar, R. D., Childs, D. Z., Rees, M., Tuljapurkar, S., Reznick, D. N., & Coulson, T. (2016). The effects of asymmetric competition on the life history of Trinidadian guppies. Ecology Letters, 19, 268-278. https://doi.org/10.1111/ele.12563
Bassar, R. D., Lopez-Sepulcre, A., Reznick, D. N., & Travis, J. (2013). Experimental evidence for density-dependent regulation and selection on Trinidadian guppy life histories. The American Naturalist, 181, 25-38. https://doi.org/10.1086/668590
Bassar, R. D., Marshall, M. C., López-Sepulcre, A., Zandonà, E., Auer, S. K., Travis, J., Pringle, C. M., Flecker, A. S., Thomas, S. A., Fraser, D. F., & Reznick, D. N. (2010). Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences of the United States of America, 107, 3616-3621. https://doi.org/10.1073/pnas.0908023107
Bassar, R. D., Simon, T., Roberts, W., Travis, J., & Reznick, D. N. (2017). The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community. Evolution, 71, 373-385.
Bassar, R. D., Travis, J., & Coulson, T. (2017). Predicting coexistence in species with continuous ontogenetic niche shifts and competitive asymmetry. Ecology, 98, 2823-2836.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Grantee Submission, 76, 1-32.
Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation (2nd ed.). Sinauer Associates. Inc.
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343
de Roos, A. M., & Persson, L. (2013). Population and community ecology of ontogenetic development. Princeton University Press.
Edeline, E., & Loeuille, N. (2021). Size-dependent eco-evolutionary feedbacks in harvested systems. Oikos, 1-14. https://doi.org/10.1111/oik.08592
Ellner, S. P., Childs, D. Z., & Rees, M. (2016). Data-driven modelling of structured populations: A practical guide to the integral projection model. Springer.
Fraser, D. F., & Gilliam, J. F. (1992). Nonlethal impacts of predator invasion: Facultative suppression of growth and reproduction. Ecology, 73, 959-970. https://doi.org/10.2307/1940172
Fraser, D. F., Gilliam, J. F., MacGowan, M. P., Arcaro, C. M., & Guillozet, P. H. (1999). Habitat quality in a hostile river corridor. Ecology, 80, 597-607.
Fraser, D. F., & Lamphere, B. A. (2013). Experimental evaluation of predation as a facilitator of invasion success in a stream fish. Ecology, 94, 640-649. https://doi.org/10.1890/12-0803.1
Ghalambor, C. K., Reznick, D. N., & Walker, J. A. (2004). Constraints on adaptive evolution: The functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). The American Naturalist, 164, 38-50.
Gilliam, J. F., Fraser, D. F., & Alkins-Koo, M. (1993). Structure of a tropical stream fish community: A role for biotic interactions. Ecology, 74, 1856-1870. https://doi.org/10.2307/1939943
Griffiths, J. I., Childs, D. Z., Bassar, R. D., Coulson, T., Reznick, D. N., & Rees, M. (2020). Individual differences determine the strength of ecological interactions. Proceedings of the National Academy of Sciences of the United States of America, 117, 17068-17073. https://doi.org/10.1073/pnas.2000635117
Hart, S. P., Schreiber, S. J., & Levine, J. M. (2016). How variation between individuals affects species coexistence. Ecology Letters, 19, 825-838. https://doi.org/10.1111/ele.12618
Hjelm, J., van de Weerd, G. H., & Sibbing, F. A. (2003). Functional link between foraging performance, functional morphology, and diet shift in roach (Rutilus rutilus). Canadian Journal of Fisheries and Aquatic Sciences, 60, 700-709.
Inouye, B. D. (2001). Response surface experimental designs for investigating interspecific competition. Ecology, 82, 2696-2706.
Kuang, J. J., & Chesson, P. (2010). Interacting coexistence mechanisms in annual plant communities: Frequency-dependent predation and the storage effect. Theoretical Population Biology, 77, 56-70. https://doi.org/10.1016/j.tpb.2009.11.002
Loreau, M., & Ebenhoh, W. (1994). Competitive exclusion and coexistence of species with complex life cycles. Theoretical Population Biology, 46, 58-77. https://doi.org/10.1006/tpbi.1994.1019
MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. https://doi.org/10.1086/282505
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and STAN. CRC Press.
Miller, T. E., & Rudolf, V. H. (2011). Thinking inside the box: Community-level consequences of stage-structured populations. Trends in Ecology & Evolution, 26, 457-466. https://doi.org/10.1016/j.tree.2011.05.005
Nakazawa, T. (2015). Ontogenetic niche shifts matter in community ecology: A review and future perspectives. Population Ecology, 57, 347-354. https://doi.org/10.1007/s10144-014-0448-z
Owens, D. C. (2010). Seasonal variation in terrestrial insect subsidies to tropical streams and implications for the diet of Rivulus hartii. Dissertations & Theses in Natural Resources, 8.
Potter, T., King, L., Travis, J., & Bassar, R. D. (2019). Competitive asymmetry and local adaptation in Trinidadian guppies. Journal of Animal Ecology, 88, 330-342. https://doi.org/10.1111/1365-2656.12918
Reichstein, B., Schröder, A., Persson, L., & De Roos, A. M. (2013). Habitat complexity does not promote coexistence in a size-structured intraguild predation system. Journal of Animal Ecology, 82, 55-63. https://doi.org/10.1111/j.1365-2656.2012.02032.x
Reznick, D. N., Bassar, R. D., Handelsman, C. A., Ghalambor, C. K., Arendt, J., Coulson, T., Potter, T., Ruell, E. W., Torres-Dowdall, J., Bentzen, P., & Travis, J. (2019). Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. The American Naturalist, 194, 671-692. https://doi.org/10.1086/705380
Reznick, D. A., Bryga, H., & Endler, J. A. (1990). Experimentally induced life-history evolution in a natural population. Nature, 346, 357-359. https://doi.org/10.1038/346357a0
Reznick, D., Butler, M. J. IV, & Rodd, H. (2001). Life-history evolution in guppies. VII. The comparative ecology of high-and low-predation environments. The American Naturalist, 157, 126-140. https://doi.org/10.1086/318627
Reznick, D., & Endler, J. A. (1982). The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution, 160-177.
Siepielski, A. M., & McPeek, M. A. (2010). On the evidence for species coexistence: A critique of the coexistence program. Ecology, 91, 3153-3164. https://doi.org/10.1890/10-0154.1
Travis, J., Reznick, D., Bassar, R. D., López-Sepulcre, A., Ferriere, R., & Coulson, T. (2014). Do eco-evo feedbacks help us understand nature? Answers from studies of the Trinidadian guppy. Advances in Ecological Research, 50, 1-40.
Turner Tomaszewicz, C. N., Seminoff, J. A., Peckham, S. H., Avens, L., & Kurle, C. M. (2017). Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ15n values from bone growth rings. Journal of Animal Ecology, 86, 694-704.
Walsh, M. R., & Reznick, D. N. (2008). Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proceedings of the National Academy of Sciences of the United States of America, 105, 594-599. https://doi.org/10.1073/pnas.0710051105
Walsh, M. R., & Reznick, D. N. (2011). Experimentally induced life-history evolution in a killifish in response to the introduction of guppies. Evolution: International Journal of Organic Evolution, 65, 1021-1036. https://doi.org/10.1111/j.1558-5646.2010.01188.x
Walter, R. P., Blum, M. J., Snider, S. B., Paterson, I. G., Bentzen, P., Lamphere, B. A., & Gilliam, J. F. (2011). Isolation and differentiation of Rivulus hartii across Trinidad and neighboring islands. Molecular Ecology, 20, 601-618. https://doi.org/10.1111/j.1365-294X.2010.04968.x
Warner, R. R., & Chesson, P. L. (1985). Coexistence mediated by recruitment fluctuations: A field guide to the storage effect. The American Naturalist, 125, 769-787. https://doi.org/10.1086/284379
Weiner, J. (1990). Asymmetric competition in plant populations. Trends in Ecology & Evolution, 5, 360-364. https://doi.org/10.1016/0169-5347(90)90095-U
Werner, E. E., & Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393-425. https://doi.org/10.1146/annurev.es.15.110184.002141
Willing, E. M., Bentzen, P., Van Oosterhout, C., Hoffmann, M., Cable, J., Breden, F., Weigel, D., & Dreyer, C. (2010). Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies. Molecular Ecology, 19, 968-984. https://doi.org/10.1111/j.1365-294X.2010.04528.x
Young, K. A. (2004). Asymmetric competition, habitat selection, and niche overlap in juvenile salmonids. Ecology, 85, 134-149. https://doi.org/10.1890/02-0402
Zandona, E., Auer, S. K., Kilham, S. S., Howard, J. L., López-Sepulcre, A., O’Connor, M. P., Bassar, R. D., Osorio, A., Pringle, C. M., & Reznick, D. N. (2011). Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Functional Ecology, 25, 964-973. https://doi.org/10.1111/j.1365-2435.2011.01865.x
Zandonà, E., Auer, S. K., Kilham, S. S., & Reznick, D. N. (2015). Contrasting population and diet influences on gut length of an omnivorous tropical fish, the Trinidadian guppy (Poecilia reticulata). PLoS ONE, 10, e0136079. https://doi.org/10.1371/journal.pone.0136079

Auteurs

Jaime M Anaya-Rojas (JM)

Department of Biological Science, Florida State University, Tallahassee, FL, USA.
Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.

Ronald D Bassar (RD)

Department of Biology, Williams College, Williamstown, MA, USA.

Tomos Potter (T)

Department of Zoology, University of Oxford, Oxford, UK.

Allison Blanchette (A)

Department of Biological Science, Florida State University, Tallahassee, FL, USA.

Shay Callahan (S)

University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA.

Nick Framstead (N)

Department of Biological Science, Florida State University, Tallahassee, FL, USA.

David Reznick (D)

Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.

Joseph Travis (J)

Department of Biological Science, Florida State University, Tallahassee, FL, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH