Mushrooms on the plate: Trends towards NAFLD treatment, health improvement and sustainable diets.

NAFLD treatment gut-liver axis protection liver-adipose tissue axis mushrooms non-communicable diseases sustainable healthy diets

Journal

European journal of clinical investigation
ISSN: 1365-2362
Titre abrégé: Eur J Clin Invest
Pays: England
ID NLM: 0245331

Informations de publication

Date de publication:
Mar 2022
Historique:
revised: 06 07 2021
received: 07 05 2021
accepted: 08 07 2021
pubmed: 15 8 2021
medline: 18 3 2022
entrez: 14 8 2021
Statut: ppublish

Résumé

Non-alcoholic fatty liver disease (NAFLD) is a most important cause of liver disease. Similar to other non-communicable diseases (NCD), such as obesity and type II diabetes mellitus, NAFLD can strongly affected by diet. Diet-related NCD and malnutrition are rising in all regions being a major cause of the global health, economic and environmental burdens. Mushrooms, important dietary components since the hunter-gathering communities, have increasingly gained momentum in biomedical research and therapeutics due to their interplay in metabolism traits. We emphasize here the beneficial effects of mushroom-enriched diets on the homeostasis of lipid and sugar metabolism, including their modulation, but also interfering with insulin metabolism, gut microbiota, inflammation, oxidative stress and autophagy. In this review, we describe the cellular and molecular mechanisms at the gut-liver axis and the liver-white adipose tissue (WAT) axis, that plausibly cause such positive modulation, and discuss the potential of mushroom-enriched diets to prevent or ameliorate NAFLD and related NCD, also within the shift needed towards healthy sustainable diets.

Identifiants

pubmed: 34390493
doi: 10.1111/eci.13667
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13667

Subventions

Organisme : H2020 Marie Skłodowska-Curie Actions
ID : ID: 722619, ID: 734719
Organisme : FOIE GRAS and mtFOIE GRAS projects

Informations de copyright

© 2021 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

Références

Cordain L, Eaton SB, Sebastian A, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341-354.
Corbett S, Courtiol A, Lummaa V, Moorad J, Stearns S. The transition to modernity and chronic disease: mismatch and natural selection. Nat Rev Genet. 2018;19(7):419-430.
Younossi ZM. The epidemiology of nonalcoholic steatohepatitis. Clin Liv Dis. 2018;11(4):92-94.
Paik JM, Golabi P, Younossi Y, Mishra A, Younossi ZM. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology. 2020;72(5):1605-1616.
Worldwide trends in body-mass index underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627-2642.
Collaborators GBDRF. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923-1994.
Collaborators GBDD. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958-1972
Noncommunicable Diseases Country Profiles 2018. World Health Organization; 2018.
Li X, Wang H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci. 2020;10(1):140.
Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15(6):349-364.
Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 2019;7(4):313-324.
Grattagliano I, Montezinho LP, Oliveira PJ, et al. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol. 2019;160:34-45.
Simões ICM, Fontes A, Pinton P, Zischka H, Wieckowski MR. Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol. 2018;95:93-99.
Masarone M, Rosato V, Dallio M, Gravina AG. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613.
Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47-S64.
FAO I, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World 2020.Transforming Food Systems for Affordable Healthy Diets. Rome, FAO: FAO, IFAD, UNICEF, WFP and WHO; 2020.
Miller V, Webb P, Micha R, Mozaffarian D. Defining diet quality: a synthesis of dietary quality metrics and their validity for the double burden of malnutrition. Lancet Planet Health. 2020;4(8):e352-e370.
Alemany-Pagès M, Moura-Ramos M, Araújo S, et al. Insights from qualitative research on NAFLD awareness with a cohort of T2DM patients: time to go public with insulin resistance? BMC Public Health. 2020;20(1):1142.
Anderson EL, Howe LD, Jones HE, Higgins JPT, Lawlor DA, Fraser A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PLoS One. 2015;10(10):e0140908.
Lazarus JV, Colombo M, Cortez-Pinto H, et al. NAFLD - sounding the alarm on a silent epidemic. Nat Rev Gastroenterol Hepatol. 2020;17(7):377-379.
Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67(4):829-846.
EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-1402.
Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57(11):1299-1313.
Mirabelli M, Chiefari E, Arcidiacono B, et al. Mediterranean diet nutrients to turn the tide against insulin resistance and related diseases. Nutrients. 2020;12(4):1066. https://doi.org/10.3390/nu12041066
Dubey SK, Chaturvedi VK, Mishra D, Bajpeyee A, Tiwari A, Singh MP. Role of edible mushroom as a potent therapeutics for the diabetes and obesity. 3 Biotech. 2019;9(12):450.
Martel J, Ojcius DM, Chang CJ, et al. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol. 2017;13(3):149-160.
Fontes A, Alemany-Pagès M, Oliveira PJ. Antioxidant versus pro-apoptotic effects of mushroom-enriched diets on mitochondria in liver disease. Int J Mol Sci. 2019;20:16.
Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: boon for therapeutic applications. 3 Biotech. 2018;8(8):334.
Pettigrew J. Iconography in Bradshaw rock art: breaking the circularity. Clin Exp Optomet. 2011;94(5):403-417.
Weyrich LS, Duchene S, Soubrier J, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature. 2017;544(7650):357-361.
Trappe J, Claridge A, Arora D, Smit W. Desert truffles of the African Kalahari: ecology, ethnomycology, and taxonomy. Econ Bot. 2008;62:521-529.
Kalač P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric. 2013;93(2):209-218.
Patel S, Rauf A, Khan H, Khalid S, Mubarak MS. Potential health benefits of natural products derived from truffles: a review. Trends Food Sci Technol. 2017;70:1-8.
Zhao S, Gao Q, Rong C, et al. Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. J Fungi (Basel). 2020;6:4.
Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J. Proteins of higher fungi-from forest to application. Trends Biotechnol. 2012;30(5):259-273.
Rahi DK, Malik D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. 2016.
Royse D, Baars JJP, Tan Q. Current overview of mushroom production in the world. 2017.
Chang S-T. Mushrooms and mushroom cultivation. In: eLS.
Hall IR, Yun W, Amicucci A. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 2003;21(10):433-438.
Li H, Tian Y, Menolli N Jr, et al. Reviewing the world's edible mushroom species: a new evidence-based classification system. Compr Rev Food Science Food Safety. 2021;20(2):1982-2014.
Jo KJ, Ghim J, Kim J, et al. Water Extract of Pleurotus eryngii var. ferulae prevents high-fat diet-induced obesity by inhibiting pancreatic lipase. J Med Food. 2019;22(2):178-185.
Nakahara D, Nan C, Mori K, et al. Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. Eur J Nutr. 2020;59(7):3231-3244.
Neyrinck AM, Bindels LB, De Backer F, Pachikian BD, Cani PD, Delzenne NM. Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action. Int Immunopharmacol. 2009;9(6):767-773.
Kanaya N, Kubo M, Liu Z, et al. Protective effects of white button mushroom (Agaricus bisporus) against hepatic steatosis in ovariectomized mice as a model of postmenopausal women. PLoS One. 2011;6(10):e26654.
Pan Y-Y, Zeng F, Guo W-L, et al. Effect of Grifola frondosa 95% ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. Food Function. 2018;9(12):6268-6278.
Ding Y, Xiao C, Wu Q, et al. The mechanisms underlying the hypolipidaemic effects of grifola frondosa in the liver of rats. Front Microbiol. 2016;7:1186.
Chang CJ, Lin CS, Lu CC, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489.
Chang CJ, Lu CC, Lin CS, et al. Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. Int J Obesity (2005). 2018;42(2):231-243.
Guo WL, Pan YY, Li L, Li TT, Liu B, Lv XC. Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats. Food Funct. 2018;9(6):3419-3431.
Zhong D, Xie Z, Huang B, et al. Ganoderma lucidum polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF. Cell Physiol Biochem. 2018;49(3):1163-1179.
Pan D, Zhang D, Wu J, et al. Antidiabetic, antihyperlipidemic and antioxidant activities of a novel proteoglycan from ganoderma lucidum fruiting bodies on db/db mice and the possible mechanism. PLoS One. 2013;8(7):e68332.
Pan D, Zhang D, Wu J, et al. A novel proteoglycan from Ganoderma lucidum fruiting bodies protects kidney function and ameliorates diabetic nephropathy via its antioxidant activity in C57BL/6 db/db mice. Food Chem Toxicol. 2014;63:111-118.
Yang Z, Chen C, Zhao J, et al. Hypoglycemic mechanism of a novel proteoglycan, extracted from Ganoderma lucidum, in hepatocytes. Eur J Pharmacol. 2018;820:77-85.
Yang Z, Wu F, He Y, et al. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway. Food Funct. 2018;9(1):397-406.
Xiong M, Huang Y, Liu Y, et al. Antidiabetic activity of ergosterol from pleurotus ostreatus in KK-A(y) mice with spontaneous type 2 diabetes mellitus. Mol Nutr Food Res. 2018;62(3):1700444. https://doi.org/10.1002/mnfr.201700444
Chen M-H, Lin C, Shih C. Antidiabetic and antihyperlipidemic effects of clitocybe nuda on glucose transporter 4 and AMP-activated protein kinase phosphorylation in high-fat-fed mice. Evid Based Complement Alternat Med. 2014;2014:981046.
Gil-Ramírez A, Clavijo C, Palanisamy M, et al. Screening of edible mushrooms and extraction by pressurized water (PWE) of 3-hydroxy-3-methyl-glutaryl CoA reductase inhibitors. J Funct Foods. 2013;5(1):244-250.
Gil-Ramírez A, Caz V, Martin-Hernandez R, et al. Modulation of cholesterol-related gene expression by ergosterol and ergosterol-enriched extracts obtained from Agaricus bisporus. Eur J Nutr. 2016;55(3):1041-1057.
Caz V, Gil-Ramírez A, Largo C, et al. Modulation of cholesterol-related gene expression by dietary fiber fractions from edible mushrooms. J Agric Food Chem. 2015;63(33):7371-7380.
Gil-Ramírez A, Caz V, Smiderle FR, et al. Water-soluble compounds from lentinula edodes influencing the HMG-CoA reductase activity and the expression of genes involved in the cholesterol metabolism. J Agric Food Chem. 2016;64(9):1910-1920.
Yang H, Hwang I, Kim S, Hong EJ, Jeung EB. Lentinus edodes promotes fat removal in hypercholesterolemic mice. Exp Ther Med. 2013;6(6):1409-1413.
López-Jaramillo P, Gómez-Arbeláez D, López-López J, et al. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Invest. 2014;18(1):37-45.
Nagao K, Inoue N, Inafuku M, et al. Mukitake mushroom (Panellus serotinus) alleviates nonalcoholic fatty liver disease through the suppression of monocyte chemoattractant protein 1 production in db/db mice. J Nutr Biochem. 2010;21(5):418-423.
Inoue N, Inafuku M, Shirouchi B, Nagao K, Yanagita T. Effect of Mukitake mushroom (Panellus serotinus) on the pathogenesis of lipid abnormalities in obese, diabetic ob/ob mice. Lipids Health Dis. 2013;12:18.
Inafuku M, Nagao K, Nomura S, et al. Protective effects of fractional extracts from Panellus serotinus on non-alcoholic fatty liver disease in obese, diabetic db/db mice. Br J Nutr. 2012;107(5):639-646.
Hiwatashi K, Kosaka Y, Suzuki N, et al. Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet. Biosci Biotechnol Biochem. 2010;74(7):1447-1451.
Zhao S, Zhang S, Zhang W, et al. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved. Sci Rep. 2019;9:13725.
Sato M, Tokuji Y, Yoneyama S, et al. Effect of dietary Maitake (Grifola frondosa) mushrooms on plasma cholesterol and hepatic gene expression in cholesterol-fed mice. J Oleo Sci. 2013;62(12):1049-1058.
Aoki H, Hanayama M, Mori K, Sato R. Grifola frondosa (Maitake) extract activates PPARδ and improves glucose intolerance in high-fat diet-induced obese mice. Biosci Biotechnol Biochem. 2018;82(9):1550-1559.
Dong Y, Zhang J, Gao Z, et al. Characterization and anti-hyperlipidemia effects of enzymatic residue polysaccharides from Pleurotus ostreatus. Int J Biol Macromol. 2019;129:316-325.
Ren D, Zhao Y, Nie Y, Lu X, Sun Y, Yang X. Chemical composition of Pleurotus eryngii polysaccharides and their inhibitory effects on high-fructose diet-induced insulin resistance and oxidative stress in mice. Food Funct. 2014;5(10):2609-2620.
Choi HN, Jang YH, Kim MJ, et al. Cordyceps militaris alleviates non-alcoholic fatty liver disease in ob/ob mice. Nutr Res Pract. 2014;8(2):172-176.
Dai D-L, Shen W, Yu H-F, Guan X, Yi Y. Effect of cordyceps sinensis on uncoupling protein 2 in experimental rats with nonalcoholic fatty liver. J Health Sci. 2006;52:390-396.
Liang Z, Yuan Z, Li G, Fu F, Shan Y. Hypolipidemic, antioxidant, and antiapoptotic effects of polysaccharides extracted from reishi mushroom, ganoderma lucidum (Leysser: Fr) karst, in mice fed a high-fat diet. J Med Food. 2018;21(12):1218-1227.
Liang Z, Yuan Z, Guo J, et al. Ganoderma lucidum polysaccharides prevent palmitic acid-evoked apoptosis and autophagy in intestinal porcine epithelial cell line via restoration of mitochondrial function and regulation of MAPK and AMPK/Akt/mTOR signaling pathway. Int J Mol Sci. 2019;20(3):478.
Jeitler M, Michalsen A, Frings D, et al. Significance of medicinal mushrooms in integrative oncology: a narrative review. Front Pharmacol. 2020;11:580656.
Dai R, Liu M, Nik Nabil WN, Xi Z, Mycomedicine XUH. A unique class of natural products with potent anti-tumour bioactivities. Molecules. 2021;26(4):1113.
Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: time for translation? J Hepatol. 2019;70(5):985-998.
Li X, Xue Y, Pang L, et al. Agaricus bisporus-derived β-glucan prevents obesity through PPAR γ downregulation and autophagy induction in zebrafish fed by chicken egg yolk. Int J Biol Macromol. 2019;125:820-828.
Yang S, Qu Y, Zhang H, et al. Hypoglycemic effects of polysaccharides from Gomphidiaceae rutilus fruiting bodies and their mechanisms. Food & Function. 2020;11(1):424-434.
Kim JH, Sim HA, Jung DY, et al. Poria cocus wolf extract ameliorates hepatic steatosis through regulation of lipid metabolism, inhibition of ER stress, and activation of autophagy via AMPK activation. Int J Mol Sci. 2019;20(19):4801.
Lin C-H, Chang C-Y, Lee K-R, et al. Cold-water extracts of Grifola frondosa and its purified active fraction inhibit hepatocellular carcinoma in vitro and in vivo. Exp Biol Med (Maywood). 2016;241(13):1374-1385.
Xiao Y, Chen L, Fan Y, Yan P, Li S, Zhou X. The effect of boletus polysaccharides on diabetic hepatopathy in rats. Chem Biol Interact. 2019;308:61-69.
Zhang L, Meng B, Li L, et al. Boletus aereus protects against acute alcohol-induced liver damage in the C57BL/6 mouse via regulating the oxidative stress-mediated NF-κB pathway. Pharmaceut Biol. 2020;58(1):905-914.
Grdović N, Dinić S, Arambašić J, et al. The protective effect of a mix of Lactarius deterrimus and Castanea sativa extracts on streptozotocin-induced oxidative stress and pancreatic β-cell death. Br J Nutr. 2012;108(7):1163-1176.
Mihailović M, Arambašić Jovanović J, Uskoković A, et al. Protective effects of the mushroom Lactarius deterrimus extract on systemic oxidative stress and pancreatic islets in streptozotocin-induced diabetic rats. J Diabetes Res. 2015;2015:576726.
Mihailović M, Jovanović JA, Uskoković A, et al. Corrigendum to “Protective effects of the mushroom Lactarius deterrimus extract on systemic oxidative stress and pancreatic islets in streptozotocin-induced diabetic rats”. J Diabetes Res. 2017;2017:1638645.
Jiang X, Teng S, Wang X, Li S, Zhang Y, Wang D. The antidiabetic and antinephritic activities of tuber melanosporum via modulation of Nrf2-mediated oxidative stress in the db/db mouse. Oxid Med Cell Longev. 2018;2018:7453865.
Zhang T, Jayachandran M, Ganesan K, Xu B. Black truffle aqueous extract attenuates oxidative stress and inflammation in STZ-induced hyperglycemic rats via Nrf2 and NF-κB pathways. Front Pharmacol. 2018;9:1257.
Calvo MS, Mehrotra A, Beelman RB, et al. A retrospective study in adults with metabolic syndrome: diabetic risk factor response to daily consumption of agaricus bisporus (white button mushrooms). Plant Foods Hum Nutr (Dordrecht, Netherlands). 2016;71(3):245-251.
Jayasuriya WJ, Wanigatunge CA, Fernando GH, Abeytunga DT, Suresh TS. Hypoglycaemic activity of culinary Pleurotus ostreatus and P. cystidiosus mushrooms in healthy volunteers and type 2 diabetic patients on diet control and the possible mechanisms of action. Phytother Res. 2015;29(2):303-309.
Poddar KH, Ames M, Hsin-Jen C, Feeney MJ, Wang Y, Cheskin LJ. Positive effect of mushrooms substituted for meat on body weight, body composition, and health parameters. A 1-year randomized clinical trial. Appetite. 2013;71:379-387.
Dicks L, Ellinger S. Effect of the intake of oyster mushrooms (pleurotus ostreatus) on cardiometabolic parameters-a systematic review of clinical trials. Nutrients. 2020;12(4):1134.
Santiago FH, Moreno JP, Cázares BX, et al. Traditional knowledge and use of wild mushrooms by Mixtecs or Ñuu savi, the people of the rain, from Southeastern Mexico. J Ethnobiol Ethnomed. 2016;12(1):35.
Mérida Ponce JP, Hernández Calderón MA, Comandini O, Rinaldi AC. Ethnomycological knowledge among Kaqchikel, indigenous Maya people of Guatemalan Highlands. J Ethnobiol Ethnomed. 2019;15(1):36.
Fongnzossie EF, Nyangono CFB, Biwole AB, et al. Wild edible plants and mushrooms of the Bamenda Highlands in Cameroon: ethnobotanical assessment and potentials for enhancing food security. J Ethnobiol Ethnomed. 2020;16(1):12.
Milenge Kamalebo H, De Kesel A. Wild edible ectomycorrhizal fungi: an underutilized food resource from the rainforests of Tshopo province (Democratic Republic of the Congo). J Ethnobiol Ethnomed. 2020;16(1):8.
Cheung H, Doughty H, Hinsley A, et al. Understanding Traditional Chinese Medicine to strengthen conservation outcomes. People Nat. 2021;3(1):115-128.
Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447-492.
Funabashi M. Human augmentation of ecosystems: objectives for food production and science by 2045. NPJ Sci Food. 2018;2:16.
Sabantina L, Kinzel F, Hauser T, et al. Comparative study of pleurotus ostreatus mushroom grown on modified PAN nanofiber mats. Nanomaterials (Basel). 2019;9:3.
Grimm D, Wösten HAB. Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol. 2018;102(18):7795-7803.
Antunes F, Marçal S. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules. 2020;25:11.
Tripathi N, Hills CD, Singh RS, Atkinson CJ. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci. 2019;2(1):35.
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N Phytol. 2018;220(4):1108-1115.
van der Heijden MG, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11(3):296-310.
Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528(7580):69-76.
Azul AM, Aragão A. Natural and sociolegal dimensions of soil for ecosystems sustainability and human health. In: Leal Filho W, Azul AM, Brandli L, Lange Salvia A, Wall T, eds. Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer International Publishing; 2021:1-15. https://doi.org/10.1007/978-3-319-95981-8_137
Johnson CN, Balmford A. Biodiversity losses and conservation responses in the Anthropocene. Science. 2017;356(6335):270-275.
Cardinale BJ, Duffy JE, Gonzalez A, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486(7401):59-67.
Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515(7528):518-522.
Sogari G, Li J, Wang Q, Lefebvre M, Gómez MI, Mora C. Factors influencing the intention to purchase meat-mushroom blended burgers among college students. Food Qual Prefer. 2021;90:104169.
Grunert KG, Hieke S, Wills J. Sustainability labels on food products: consumer motivation, understanding and use. Food Policy. 2014;44:177-189.

Auteurs

Adriana Fontes (A)

Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
DCV-Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

João Ramalho-Santos (J)

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
DCV-Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Hans Zischka (H)

Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany.

Anabela Marisa Azul (AM)

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH