Colliding and interacting microbiomes and microbial communities - consequences for human health.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
09
08
2021
received:
04
05
2021
accepted:
12
08
2021
pubmed:
15
8
2021
medline:
18
3
2022
entrez:
14
8
2021
Statut:
ppublish
Résumé
Living 'things' coexist with microorganisms, known as the microbiota/microbiome that provides essential physiological functions to its host. Despite this reliance, the microbiome is malleable and can be altered by several factors including birth-mode, age, antibiotics, nutrition, and disease. In this minireview, we consider how other microbiomes and microbial communities impact the host microbiome and the host through the concept of microbiome collisions (initial exposures) and interactions. Interactions include changes in host microbiome composition and functionality and/or host responses. Understanding the impact of other microbiomes and microbial communities on the microbiome and host are important considering the decline in human microbiota diversity in the developed world - paralleled by the surge of non-communicable, inflammatory-based diseases. Thus, surrounding ourselves with rich and diverse beneficial microbiomes and microbial communities to collide and interact with should help to diminish the loss in microbial diversity and protect from certain diseases. In the same vein, our microbiomes not only influence our health but potentially the health of those close to us. We also consider strategies for enhanced host microbiome collisions and interactions through the surrounding environment that ensure increased microbiome diversity and functionality contributing to enhanced symbiotic return to the host in terms of health benefit.
Identifiants
pubmed: 34390616
doi: 10.1111/1462-2920.15722
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
7341-7354Informations de copyright
© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Adams, R.I., Bateman, A.C., Bik, H.M., and Meadow, J.F. (2015) Microbiota of the indoor environment: a meta-analysis. Microbiome 3: 49.
Afshinnekoo, E., Meydan, C., Chowdhury, S., Jaroudi, D., Boyer, C., Bernstein, N., et al. (2015) Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst 1: 72-87.
Allen, J.G., and Marr, L.C. (2020) Recognizing and controlling airborne transmission of SARS-CoV-2 in indoor environments. Indoor Air 30: 557-558.
Arvanitakis, G., Temmerman, R., and Spök, A. (2018) Development and use of microbial-based cleaning products (MCBPs): current issues and knowledge gaps. Food Chem Toxicol 116: 3-9.
Ayeni, F.A., Biagi, E., Rampelli, S., Fiori, J., Soverini, M., Audu, H.J., et al. (2018) Infant and adult gut microbiome and metabolome in rural bassa and urban settlers from Nigeria. Cell Rep 23: 3056-3067.
Bardgett, R.D., and van der Putton, W.H. (2014) Belowground biodiversity and ecosystem functioning. Nature 515: 505-511.
Berg, G., Mahnert, A., and Moissl-Eichinger, C. (2014) Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front Microbiol 5: 15.
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.C., Charles, T., et al. (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 28: 103.
Blum, W.E.H. (2005) Functions of soil for society and the environment. Rev Environ Sci Biol 4: 75-79.
Blum, W.E.H., Zechmeister-Boltentern, S., and Keiblinger, K.M. (2019) Does soil contribute to the human gut microbiome? Microorganisms 7: 287.
Bogovič Matijašić, B., Obermajer, T., Lipoglavšek, L., Sernel, T., Locatelli, I., Kos, M., et al. (2016) Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: a randomized double-blind, placebo-controlled trial. J Dairy Sci 99: 5008-5021.
Bokhary, H., Pangesti, K.N.A., Rashid, H., Abd El Ghany, M., and Hill-Cawthorne, G.A. (2021) Travel-related antimicrobial resistance: a systematic review. Trop Med Infect Dis 6: 11.
Card, R.M., Cawthraw, S.A., Nunez-Garcia, J., Ellis, R.J., Kay, G., Pallen, M.J., et al. (2017) An in vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from Salmonella to commensal Escherichia coli. mBio 8: e00777-17.
Carlin, F. (2011) Origin of bacterial spores contaminating foods. Food Microbiol 28: 177-182.
Chin, V.K., Yong, V.C., Chong, P.P., Amin Nordin, S., Basir, R., and Abdullah, M. (2020) Mycobiome in the gut: a multiperspective review. Mediators Inflamm 2020: 9560684.
Costa, G.N., Marcelino-Guimaräes, F.C., Vilas-Bôas, G.T., Matsuo, T., and Miglioranza, L.H.S. (2014) Potential fate of ingested Lactobacillus plantarum and its occurrence in human feces. Appl Environ Microbiol 80: 1013-1019.
Dannemiller, K.C. (2019) Moving towards a robust definition for a ‘healthy’ indoor microbiome. mSystems 4: e00074-19.
Dannemiller, K.C., Gent, J., Leaderer, B.P., and Peccia, J. (2016) Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26: 179-192.
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., et al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563.
Derrien, M., and van Hylckama Vlieg, J.E.T. (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23: 354-366.
Dill-McFarland, K.A., Tang, Z.Z., Kemis, J.H., Kerby, R.L., Chen, G., Palloni, A., et al. (2019) Close social relationships correlate with human gut microbiota composition. Sci Rep 9: 703.
Draper, L.A., Ryan, F.J., Smith, M.K., Jalanka, J., Mattila, E., Arkkila, P.A., et al. (2018) Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 6: 220.
Dunn, R.R., Fierer, N., Henley, J.B., Leff, J.W., and Menninger, H.L. (2013) Home life: factors structuring the bacterial diversity found within and between homes. PLoS One 8: e64133.
Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., and Flieβbach, A. (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61: 26-37.
Finnicum, C.T., Beck, J.J., Dolan, C.V., Davis, C., Willemsen, G., Ehli, E.A., et al. (2019) Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk. BMC Microbiol 19: 230.
Flandroy, L., Poutahidis, T., Berg, G., Clarke, G., Dao, M.C., Decaestecker, E., et al. (2018) The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 627: 1018-1038.
Fonken, L.K., Frank, M.G., D'Angelo, H.M., Heinze, J.D., Watkins, L.R., Lowry, C.A., and Maier, S.F. (2018) Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction. Neurobiol Aging 71: 105-114.
Fragiadakis, G.K., Smits, S.A., Sonnenburg, E.D., Van Treuren, W., Reid, G., et al. (2019) Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes 10: 216-227.
Frank, M.G., Fonken, L.K., Dolzani, S.D., Annis, J.L., Siebler, P.H., Schmidt, D., et al. (2018) Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain Behav Immun 73: 352-363.
Groschel, M.I., Prabowo, S.A., Cardona, P.J., Stanford, J.L., and van der Werf, T.S. (2014) Therapeutic vaccines for tuberculosis - a systematic review. Vaccine 32: 3162-3168.
Gu, G., Cevallos-Cevallos, J.M., Vallad, G.E., and van Bruggen, A.H.C. (2013) Organically managed soils reduce internal colonization of tomato plants by Salmonella enterica serovar typhimurium. Phytopathology 103: 381-388.
Guo, Y., Chen, X., Wu, Y., Zhang, L., Cheng, J., Wei, G., and Lin, Y. (2018) Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities. Sci Total Environ 635: 598-606.
Gupta, V.K., Paul, S., and Dutta, C. (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 8: 1162.
Haahtela, T., Laatikainen, T., Alenius, H., Auvinen, P., Fyhrquist, N., Hanski, I., et al. (2015) Hunt for the origin of allergy - comparing the Finnish and Russian Karelia. Clin Exp Allergy 45: 891-901.
Hartmann, M., Fliessbach, A., Oberholzer, H.-R., and Widmer, F. (2006) Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities. FEMS Microbiol Ecol 57: 378-388.
Hassani, M.A., Durán, P., and Hacquard, S. (2018) Microbial interactions within the plant holobiont. Microbiome 6: 58.
Hernández, A.M., Vargas-Robles, D., Alcaraz, L.D., and Peimbert, M. (2020) Station and train surface microbiomes of Mexico City's metro (subway/underground). Sci Rep 10: 8798.
Hiddink, G.A., van Bruggen, A.H.C., Termorshuizen, A.J., Raaijmakers, J.M., and Semenov, A.V. (2005) Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas flourescens. Eur J Plant Pathol 113: 417-435.
Horve, P.F., Lloyd, S., Mhuireach, G.A., Dietz, L., Fretz, M., MacCrone, G., et al. (2020) Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expo Sci Environ Epidemiol 30: 219-235.
Hospodsky, D., Yamamoto, N., Nazaroff, W.W., Miller, D., Gorthala, S., and Peccia, J. (2015) Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children's classrooms. Indoor Air 25: 641-652.
Kang, K., Ni, Y., Li, J., Imamovic, L., Sarkar, C., Kobler, M.D., et al. (2018) The environmental exposures and inner- and intercity traffic flows of the metro system may contribute to the skin microbiome and resistome. Cell Rep 24: 1190-1202.e5.
Kelley, S.T., and Gilbert, J.A. (2013) Studying the microbiology of the indoor environment. Genome Biol 14: 202.
Kirbis, A., and Krizman, M. (2015) Spread of antibiotic resistant bacteria from food of animal origin to humans and vice versa. Procedia Food Sci 5: 148-151.
Kirjavainen, P.V., Karvonen, A.M., Adams, R.I., Täubel, M., Roponen, M., Tuoresmäki, P., et al. (2019) Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med 25: 1089-1095.
Klimenko, N.S., Tyakht, A.V., Toshchakov, S.V., Shevchenko, M.A., Korzhenkov, A.A., Afshinnekoo, E., et al. (2020) Co-occurrence patterns of bacteria within microbiome of Moscow subway. Comput Struct Biotechnol J 18: 314-322.
Lambrecht, E., Van Coillie, E., Van Meervenne, E., Boon, N., Heyndrickx, M., and Van de Wiele, T. (2019) Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Int J Food Microbiol 311: 108357.
Lang, J.M., Eisen, J.A., and Zivkovic, A.M. (2014) The microbes we eat: abundance and taxonomy of microbes consumed in a day's worth of meals for three diet types. PeerJ 2: e659.
Launay, A., Ballard, S.A., Johnson, P.D., Grayson, M.L., and Lambert, T. (2006) Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother 50: 1054-1062.
Lax, S., Sangwan, N., Smith, D., Larsen, P., Handley, K.M., Richardson, M., et al. (2017) Bacterial colonization and succession in a newly opened hospital. Sci Transl Med 9: eaah6500.
Lax, S., Smith, D.P., Hampton-Marcell, J., Owens, S.M., Handley, K.M., Scott, N.M., et al. (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345: 1048-1052.
Leung, M.H.Y., Tong, X., Wilkins, D., Cheung, H.H.L., and Lee, P.K.H. (2018) Individual and household attributes influence the dynamics of the personal skin microbiota and its association network. Microbiome 6: 26.
Leung, M.H.Y., Wilkins, D., Li, E.K.T., Kong, F.K.F., and Lee, P.K.H. (2014) Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol 80: 6760-6770.
Li, C., Chen, Q., Zhang, X., Li, H., Liu, Q., Fei, P., et al. (2020) Early life domestic pet ownership, and the risk of pet sensitization and atopic dermatitis in preschool children: a prospective birth cohort in Shanghai. Front Pediatr 8: 192.
Li, S., Yang, Z., Hu, D., Cao, L., and He, Q. (2021) Understanding building-occupant-microbiome interactions toward healthy built environments: a review. Front Environ Sci Eng 15: 65.
Liddicoat, C., Sydnor, H., Cando-Dumancela, C., Dresken, R., Liu, J., Gellie, N.J.C., et al. (2020) Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci Total Environ 701: 134684.
Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., and Gattinger, A. (2017) Organic farming enhances soil microbial abundance and activity - a meta- analysis and meta-regression. PLoS One 12: e0180442.
Lupatini, M., Korthals, G.W., de Hollander, M., Janssens, T.K.S., and Kuramae, E.E. (2017) Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol 7: 2064.
Mahnert, A., Moissl-Eichinger, C., and Berg, G. (2015) Microbiome interplay: plants alter microbial abundance and diversity within the built environment. Front Microbiol 6: 887.
Marco, M.L., Hill, C., Hutkins, R., Slavin, J., Tancredi, D.J., Merenstein, D., and Sanders, M.E. (2020) Should there be a recommended daily intake of microbes? J Nutr 150: 3061-3067.
Martínez-Romero, E., Aguirre-Noyola, J.L., Bustamante-Brito, R., González-Román, P., Hernández-Oaxaca, D., Higareda-Alvear, V., et al. (2021) We and herbivores eat endophytes. Microb Biotechnol 14: 1282-1299. https://doi.org/10.1111/1751-7915.13688.
McNulty, N.P., Yatsunenko, T., Hsiao, A., Faith, J.J., Muegge, B.D., Goodman, A.L., et al. (2011) The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 3: 106ra106.
Mhuireach, G., Johnson, B.R., Altrichter, A.E., Ladau, J., Meadow, J.F., Pollard, K.S., and Green, J.L. (2016) Urban greenness influences airborne bacterial community composition. Sci Total Environ 571: 680-687.
Mills, J.G., Brookes, J.D., Gellie, N.J.C., Liddicoat, C., Lowe, A.J., Sydnor, H.R., et al. (2019) Relating urban biodiversity to human health with the 'holobiont' concept. Front Microbiol 10: 550.
Mills, J.G., Weinstein, P., Gellie, N.J.C., Weyrich, L.S., Lowe, A.J., and Breed, M.F. (2017) Urban habitat restoration provides a health benefit through microbiome engineering: the microbiome rewilding hypothesis. Restor Ecol 25: 866-872.
Mills, S., Hill, C., and Ross, R.P. (2020) . In Bacterial Viruses: Exploitation for Biocontrol and Therapeutics, Coffey, A., and Buttimer, C. (eds). Poole, UK: Caister Academic Press, pp. 133-186.
Mills, S., Lane, J.A., Smith, G.J., Grimaldi, K.A., Ross, R.P., and Stanton, C. (2019a) Precision nutrition and the microbiome, Part II: potential opportunities and pathways to commercialisation. Nutrients 11: 1468.
Mills, S., Stanton, C., Lane, J.A., Smith, G.J., and Ross, R.P. (2019b) Precision nutrition and the microbiome, Part I: current state of the science. Nutrients 11: 923.
Misic, A.M., Davis, M.F., Tyldsley, A.S., Hodkinson, B.P., Tolomeo, P., Hu, B., et al. (2015) The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites. Microbiome 3: 2.
Mosites, E., Sammons, M., Otiang, E., Eng, A., Noecker, C., Manor, O., et al. (2017) Microbiome sharing between children, livestock and household surfaces in western Kenya. PLoS One 12: e0171017.
Piqué, N., Berlanga, M., and Miñana-Galbis, D. (2019) Health benefits of heat-killed (tyndalized) probiotics: an overview. Int J Mol Sci 20: 2534.
Qian, H., Miao, T., Liu, L., Zheng, X., Luo, D., and Li, Y. (2021) Indoor transmission of SARS-CoV-2. Indoor Air 31: 639-645.
Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W.W., and Peccia, J. (2012) Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22: 339-351.
Ramos, J.-L., and Timmis, K.N. (2021) The contribution of microbiology toward attainment of sustainable development goals: the need to conserve soil health while maximizing its productivity. Environ Microbiol Rep 13: 425-427. https://doi.org/10.1111/1758-2229.12893.
Rampelli, S., Turroni, S., Mallol, C., Hernandez, C., Galván, B., Sistiaga, A., et al. (2021) Components of a Neanderthal gut microbiome recovered from fecal sediments from El Salt. Commun Biol 4: 169.
Raynaud, X., and Nunan, N. (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9: e87217.
Reber, S.O., Siebler, P.H., Donner, N.C., Morton, J.T., Smith, D.G., Kopelman, J.M., et al. (2016) Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci USA 113: E3130-E3139.
Rezac, S., Kok, C.R., Heermann, M., and Hutkins, R. (2018) Fermented foods as a dietary source of live organisms. Front Microbiol 9: 1785.
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7: 14.
Ritchie, H. & Roser, M. (2020). Urbanization. Published online at OurWorldInData.org. Retrieved from https://ourworldindata.org/urbanization. [Online Resource] (Accessed 04.02.2020).
Robinson, J.M., Mills, J.G., and Breed, M.F. (2018) Walking ecosystems in microbiome-inspired green infrastructure: an ecological perspective on enhancing personal and planetary health. Challenges 9: 40.
Rojas-Rueda, D., Nieuwenhuijsen, M.J., Gascon, M., Perez-Leon, D., and Mudu, P. (2019) Green spaces and mortality: a systematic review and meta-analysis of cohort studies. Lancet Planet Health 3: 469-477.
Rook, G.A. (2013) Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci USA 110: 18360-18367.
Ross, A.A., Doxey, A.C., and Neufeld, J.D. (2017) The skin microbiome of cohabiting couples. mSystems 2: e00043-17.
Ruiz-Calderon, J.F., Cavallin, H., Song, S.J., Novoselac, A., Pericchi, L.R., Hernandez, J.N., et al. (2016) Walls talk: microbial biogeography of homes spanning urbanization. Sci Adv 2: e1501061.
Ruokolainen, L., Paalanen, L., Karkman, A., Laatikainen, T., von Hertzen, L., Vlasoff, T., et al. (2017) Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clin Exp Allergy 47: 665-674.
Savaiano, D.A., and Hutkins, R.W. (2021) Yogurt, cultured fermented milk, and health: a systematic review. Nutr Rev 79: 599-614.
Savard, P., Lamarche, B., Paradis, M.E., Thiboutot, H., Laurin, É., and Roy, D. (2011) Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. Int J Food Microbiol 149: 50-57.
Sharma, A., Richardson, M., Cralle, L., Stamper, C.E., Maestre, J.P., Stearns-Yoder, K.A., et al. (2019) Longitudinal homogenization of the microbiome between both occupants and the built environment in a cohort of United States Air Force Cadets. Microbiome 7: 70.
Sivakumar, N., Sathishkumar, R., Selvakumar, G., Shyamkumar, R., and Arjunekumar, K. (2020) In Plant Microbiome for Sustainable Agriculture, Sustainable Development and Biodiversity, Yadav, A.N. (ed). Switzerland: Springer Nature, pp. 113-172.
Smejda, K., Polanska, K., Stelmach, W., Majak, P., and Stelmach, I. (2020) Dog keeping at home before and during pregnancy decreased the risk of food allergy in 1-year-old children. Adv Dermatol Allergol XXXVII: 255-261.
Song, S.J., Lauber, C., Costello, E.K., Lozupone, C.A., Humphrey, G., Berg-Lyons, D., et al. (2013) Cohabiting family members share microbiota with one another and with their dogs. Elife 2: e00458.
Spök, A., Arvanitakis, G., and McClung, G. (2018) Status of microbial based cleaning products in statutory regulations and ecolabelling in Europe, the USA, and Canada. Food Chem Toxicol 116: 10-19.
Tasnim, N., Abulizi, N., Pither, J., Hart, M.M., and Gibson, D.L. (2017) Linking the gut microbial ecosystem with the environment: does gut health depend on where we live? Front Microbiol 8: 1935.
Tetz, G., and Tetz, V. (2017) Introducing the sporobiota and sporobiome. Gut Pathol 9: 38.
Timmis, K., and Ramos, J.L. (2021) The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. J Microbial Biotechnol 14: 769-797.
Trivedi, P., Leach, J.A., Tringe, S.G., Sa, T., and Singh, B.K. (2020) Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18: 607-621.
Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., et al. (2015) Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21: 973-985.
Veiga, P., Pons, N., Agrawal, A., Oozeer, R., Guyonnet, D., Brazeilles, R., et al. (2014) Changes of the human gut microbiome induced by a fermented milk product. Sci Rep 4: 6328.
Venter, Z.S., Jacobs, K., and Hawkins, H.-J. (2016) The impact of crop rotation on soil microbial biodiversity: a meta-analysis. Pedobiologia - J Soil Ecol 59: 215-223.
Von Hertzen, L., and Haahtela, T. (2006) Disconnection of man and the soil: reason for the asthma and atopy epidemic? J Allergy Clin Immunol 117: 334-344.
von Mutius, E., and Vercelli, D. (2010) Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 10: 861-868.
Wassermann, B., Müller, H., and Berg, G. (2019) An apple a day: which bacteria do we eat with organic and conventional apples? Front Microbiol 10: 1629.
Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S.A., Kim, J., et al. (2016) Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J 10: 2235-2245.
Zhou, D., Bai, Z., Zhang, H., Li, N., Bai, Z., Cheng, F., et al. (2018) Soil is a key factor influencing gut microbiota and its effect is comparable to that exerted by diet for mice [version 1; peer review: 1 approved, 1 approved with reservations]. F1000Research 7: 1588.