PPR-DYW Protein EMP17 Is Required for Mitochondrial RNA Editing, Complex III Biogenesis, and Seed Development in Maize.
CcmFC
EMP17
maize
mitochondrion
pentatricopeptide repeat protein
seed development
Journal
Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200
Informations de publication
Date de publication:
2021
2021
Historique:
received:
06
05
2021
accepted:
01
07
2021
entrez:
16
8
2021
pubmed:
17
8
2021
medline:
17
8
2021
Statut:
epublish
Résumé
The conversion of cytidines to uridines (C-to-U) at specific sites in mitochondrial and plastid transcripts is a post-transcriptional processing event that is important to the expression of organellar genes. Pentatricopeptide repeat (PPR) proteins are involved in this process. In this study, we report the function of a previously uncharacterized PPR-DYW protein, Empty pericarp17 (EMP17), in the C-to-U editing and kernel development in maize. EMP17 is targeted to mitochondria. The loss-function of EMP17 arrests maize kernel development, abolishes the editing at
Identifiants
pubmed: 34394147
doi: 10.3389/fpls.2021.693272
pmc: PMC8357149
doi:
Types de publication
Journal Article
Langues
eng
Pagination
693272Informations de copyright
Copyright © 2021 Wang, Liu, Huang, Li, Yang, Sayyed, Sun, Gu, Wang and Tan.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Plant J. 2014 Sep;79(5):797-809
pubmed: 24923534
J Mol Evol. 2001 Oct-Nov;53(4-5):327-32
pubmed: 11675592
Mol Genet Genomics. 2002 Dec;268(4):434-45
pubmed: 12471441
Plant J. 2010 May 1;62(4):560-70
pubmed: 20163555
PLoS Genet. 2012;8(8):e1002910
pubmed: 22916040
Plant Cell. 2002 Dec;14(12):3271-84
pubmed: 12468742
Am J Bot. 2011 Apr;98(4):704-30
pubmed: 21613169
Mitochondrion. 2008 Jan;8(1):61-73
pubmed: 18033741
Plant J. 2019 Sep;99(6):1116-1126
pubmed: 31077462
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1169-78
pubmed: 23487777
Plant Cell. 2012 Feb;24(2):676-91
pubmed: 22319053
Proc Natl Acad Sci U S A. 2012 May 29;109(22):E1453-61
pubmed: 22566615
Plant J. 2020 Aug;103(5):1767-1782
pubmed: 32559332
Trends Biochem Sci. 2000 Feb;25(2):46-7
pubmed: 10664580
Mol Plant. 2015 Oct 5;8(10):1466-77
pubmed: 26048647
J Biol Chem. 2020 Mar 13;295(11):3497-3505
pubmed: 31996373
Plant Physiol. 2017 Apr;173(4):2278-2293
pubmed: 28213559
Plant Physiol. 2009 Oct;151(2):603-19
pubmed: 19675153
Nucleic Acids Res. 2017 May 5;45(8):4915-4928
pubmed: 28201607
J Exp Bot. 2016 Oct;67(19):5687-5698
pubmed: 27670716
PLoS Genet. 2015 Mar 13;11(3):e1005028
pubmed: 25768119
Plant Physiol. 2004 Nov;136(3):3486-503
pubmed: 15542500
New Phytol. 2019 Jan;221(2):896-907
pubmed: 30168136
J Biol Chem. 2015 Apr 17;290(16):10136-42
pubmed: 25739442
Commun Biol. 2019 Mar 1;2:85
pubmed: 30854477
New Phytol. 2017 Apr;214(2):782-795
pubmed: 28121385
Plant J. 2016 Feb;85(4):532-47
pubmed: 26764122
New Phytol. 2018 Nov;220(3):878-892
pubmed: 30019754
J Biol Chem. 2015 Mar 6;290(10):6445-56
pubmed: 25583991
G3 (Bethesda). 2011 Sep;1(4):293-302
pubmed: 22384340
Nucleic Acids Res. 2015 Apr 20;43(7):3814-25
pubmed: 25800738
Trends Biochem Sci. 1994 Mar;19(3):105-6
pubmed: 8203015
Plant Cell. 2004 Aug;16(8):2089-103
pubmed: 15269332
Curr Genet. 1995 Oct;28(5):415-22
pubmed: 8575013
New Phytol. 2014 Sep;203(4):1090-1095
pubmed: 25041347
New Phytol. 2017 Jun;214(4):1563-1578
pubmed: 28277611
J Biol Chem. 2008 Sep 12;283(37):25200-25208
pubmed: 18644794
Plant Cell. 2013 Mar;25(3):868-83
pubmed: 23463776
Nucleic Acids Res. 2012 Jun;40(11):5052-64
pubmed: 22362750
J Biol Chem. 2015 Jan 30;290(5):2957-68
pubmed: 25512379
Plant Cell Physiol. 2020 Feb 1;61(2):370-380
pubmed: 31670803
J Exp Bot. 2018 May 25;69(12):3037-3051
pubmed: 29648606
Annu Rev Plant Biol. 2014;65:415-42
pubmed: 24471833
PLoS Genet. 2013 Jun;9(6):e1003584
pubmed: 23818871
Mol Biol Evol. 2008 Jun;25(6):1120-8
pubmed: 18343892
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5104-9
pubmed: 22411807
Nat Genet. 1997 Jan;15(1):57-61
pubmed: 8988169
Mol Genet Genomics. 2006 Sep;276(3):285-93
pubmed: 16862402
J Exp Bot. 2020 Sep 19;71(18):5495-5505
pubmed: 32531050
Plant J. 2020 Mar;101(5):1040-1056
pubmed: 31630458
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16113-8
pubmed: 16236729
C R Acad Sci III. 2001 Mar;324(3):209-17
pubmed: 11291307
Trends Plant Sci. 2014 Jun;19(6):380-9
pubmed: 24462302
Plant J. 2016 Feb;85(4):507-19
pubmed: 26764126
Nature. 2005 Jan 20;433(7023):326-30
pubmed: 15662426
Mitochondrion. 2014 Nov;19 Pt B:295-313
pubmed: 24561573
New Phytol. 2011 Jul;191(1):37-47
pubmed: 21557747
Plant J. 2012 Mar;69(6):996-1005
pubmed: 22060106
Plant J. 2005 Sep;43(5):708-15
pubmed: 16115067
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8877-8882
pubmed: 28760958
J Biol Chem. 1995 Aug 4;270(31):18227-33
pubmed: 7629140
J Exp Bot. 2017 May 17;68(11):2833-2847
pubmed: 28549172
J Integr Plant Biol. 2020 Jun;62(6):777-792
pubmed: 31332949
Plant Physiol. 2016 Jan;170(1):294-309
pubmed: 26578708
Plant J. 2015 Oct;84(2):283-95
pubmed: 26303363
Gene. 2002 Mar 6;286(1):21-4
pubmed: 11943456
J Bacteriol. 1995 Aug;177(15):4321-6
pubmed: 7635817
Plant J. 2005 Oct;44(1):52-61
pubmed: 16167895
FEBS Lett. 1995 Oct 2;373(1):56-60
pubmed: 7589434
Trends Plant Sci. 2016 Nov;21(11):962-973
pubmed: 27491516
Nucleic Acids Res. 2003 Oct 15;31(20):5907-16
pubmed: 14530439
PLoS Genet. 2019 Aug 2;15(8):e1008305
pubmed: 31374076