Application of Optimal Control of Infectious Diseases in a Model-Free Scenario.
COVID-19
Complex systems
Epidemiology
Optimal control
SIR model
Vaccination
Journal
SN computer science
ISSN: 2661-8907
Titre abrégé: SN Comput Sci
Pays: Singapore
ID NLM: 101772308
Informations de publication
Date de publication:
2021
2021
Historique:
received:
05
06
2020
accepted:
25
07
2021
entrez:
16
8
2021
pubmed:
17
8
2021
medline:
17
8
2021
Statut:
ppublish
Résumé
Optimal control for infectious diseases has received increasing attention over the past few decades. In general, a combination of cost state variables and control effort have been applied as cost indices. Many important results have been reported. Nevertheless, it seems that the interpretation of the optimal control law for an epidemic system has received less attention. In this paper, we have applied Pontryagin's maximum principle to develop an optimal control law to minimize the number of infected individuals and the vaccination rate. We have adopted the compartmental model SIR to test our technique. We have shown that the proposed control law can give some insights to develop a control strategy in a model-free scenario. Numerical examples show a reduction of 50% in the number of infected individuals when compared with constant vaccination. There is not always a prior knowledge of the number of susceptible, infected, and recovered individuals required to formulate and solve the optimal control problem. In a model-free scenario, a strategy based on the analytic function is proposed, where prior knowledge of the scenario is not necessary. This insight can also be useful after the development of a vaccine to COVID-19, since it shows that a fast and general cover of vaccine worldwide can minimize the number of infected, and consequently the number of deaths. The considered approach is capable of eradicating the disease faster than a constant vaccination control method.
Identifiants
pubmed: 34396152
doi: 10.1007/s42979-021-00794-3
pii: 794
pmc: PMC8349133
doi:
Types de publication
Journal Article
Langues
eng
Pagination
405Informations de copyright
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021.
Déclaration de conflit d'intérêts
Conflict of interestThe authors declare that there is no conflict of interest regarding the publication of this paper.
Références
Biosystems. 2011 May-Jun;104(2-3):127-35
pubmed: 21315798
Proc Biol Sci. 2011 Jun 7;278(1712):1661-9
pubmed: 21068045
Math Biosci. 1994 Nov;124(1):83-105
pubmed: 7827425
J Math Biol. 2009 Dec;59(6):841-80
pubmed: 19266170
N Engl J Med. 2020 Apr 30;382(18):1677-1679
pubmed: 32109012
Adv Differ Equ. 2019;2019(1):532
pubmed: 32226453
Acta Biotheor. 2013 Mar;61(1):141-72
pubmed: 23525763
Math Biosci. 2017 Oct;292:86-96
pubmed: 28801246
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
Math Biosci. 2003 Sep;185(1):89-109
pubmed: 12900143
Am J Trop Med Hyg. 2020 Jun;102(6):1181-1183
pubmed: 32323644
Nature. 2020 Mar;579(7798):183
pubmed: 32157230
Lancet Infect Dis. 2021 Jan;21(1):52-58
pubmed: 33058797
Math Biosci Eng. 2019 Nov 14;17(2):1074-1089
pubmed: 32233571
Theor Popul Biol. 1977 Apr;11(2):182-238
pubmed: 325679
J Math Biol. 2003 Aug;47(2):153-68
pubmed: 12883859
Math Biosci Eng. 2013 Oct-Dec;10(5-6):1691-701
pubmed: 24245629
Math Biosci. 2000 Apr;164(2):183-201
pubmed: 10748286
R Soc Open Sci. 2018 May 2;5(5):180200
pubmed: 29892455
Proc Biol Sci. 2003 Jun 7;270(1520):1129-36
pubmed: 12816650
NPJ Vaccines. 2020 Apr 30;5(1):34
pubmed: 32377399