Spinal lumbar dI2 interneurons contribute to stability of bipedal stepping.


Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
16 08 2021
Historique:
received: 11 08 2020
accepted: 11 08 2021
pubmed: 17 8 2021
medline: 30 11 2021
entrez: 16 8 2021
Statut: epublish

Résumé

Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in posthatching day 8 hatchlings, with occasional collapses, variable step profiles, and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.

Identifiants

pubmed: 34396953
doi: 10.7554/eLife.62001
pii: 62001
pmc: PMC8448531
doi:
pii:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2021, Haimson et al.

Déclaration de conflit d'intérêts

BH, YH, NB, AK, MD, YC, AL, AK none

Références

Curr Opin Neurobiol. 2019 Jun;56:175-184
pubmed: 30954861
Dev Biol. 2005 Feb 15;278(2):587-606
pubmed: 15680372
J Neurosci. 2012 Oct 31;32(44):15377-87
pubmed: 23115176
J Comp Neurol. 1988 Jul 22;273(4):584-92
pubmed: 2463285
Cell. 2016 Mar 24;165(1):207-219
pubmed: 26949184
Cell Rep. 2014 Nov 20;9(4):1191-201
pubmed: 25456121
PLoS Comput Biol. 2013;9(3):e1002979
pubmed: 23516353
Eur J Neurosci. 2004 Mar;19(5):1305-16
pubmed: 15016088
J Physiol. 2013 Nov 15;591(22):5433-43
pubmed: 23613538
Dev Biol. 2017 Dec 1;432(1):24-33
pubmed: 28625870
Neuron. 2018 Jan 17;97(2):341-355.e3
pubmed: 29307712
Front Comput Neurosci. 2015 Jul 06;9:75
pubmed: 26217214
Development. 2019 Mar 27;146(12):
pubmed: 30846445
J Neurosci. 2003 Jul 30;23(17):6759-67
pubmed: 12890769
J Neurosci. 2010 Nov 17;30(46):15546-57
pubmed: 21084609
J Vis Exp. 2010 May 02;(39):
pubmed: 20440258
Nat Neurosci. 2004 May;7(5):510-7
pubmed: 15064766
Brain Res Dev Brain Res. 1990 Oct 1;56(1):13-8
pubmed: 2279325
Curr Opin Neurobiol. 2003 Oct;13(5):603-6
pubmed: 14630225
Brain Behav Evol. 2011;77(1):45-54
pubmed: 21325814
J Exp Biol. 2011 Apr 15;214(Pt 8):1369-78
pubmed: 21430214
Development. 2016 Oct 1;143(19):3434-3448
pubmed: 27702783
Nature. 2012 Aug 30;488(7413):642-6
pubmed: 22932389
Nature. 2006 Mar 9;440(7081):215-9
pubmed: 16525473
PLoS One. 2013 Aug 15;8(8):e70325
pubmed: 23967072
Acta Morphol Neerl Scand. 1979 May;17(2):105-17
pubmed: 382759
Nucleic Acids Res. 2014 Oct 29;42(19):e148
pubmed: 25147209
Brain Behav Evol. 2010;76(3-4):271-8
pubmed: 21099201
J Comp Neurol. 2002 Feb 11;443(3):310-9
pubmed: 11807840
Cell Rep. 2018 Jan 30;22(5):1325-1338
pubmed: 29386118
Neuron. 2016 Dec 7;92(5):1063-1078
pubmed: 27866798
Neuron. 2001 May;30(2):411-22
pubmed: 11395003
Bioinspir Biomim. 2008 Sep;3(3):034001
pubmed: 18591738
J Vet Med Sci. 2012 Apr;74(4):495-8
pubmed: 22095164
Science. 2021 Apr 23;372(6540):385-393
pubmed: 33888637
Neural Dev. 2009 Jun 19;4:21
pubmed: 19545367
Nat Neurosci. 2010 Oct;13(10):1233-9
pubmed: 20835249
Nat Rev Genet. 2000 Oct;1(1):20-9
pubmed: 11262869
Neuron. 2013 Apr 10;78(1):191-204
pubmed: 23583114
Cell. 2011 Jul 8;146(1):178-178.e1
pubmed: 21729788
Cell Rep. 2015 Nov 10;13(6):1258-1271
pubmed: 26527010
Cell. 2014 Nov 6;159(4):896-910
pubmed: 25417164
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15681-6
pubmed: 17032779
Neuroscience. 2009 Sep 15;162(4):1150-62
pubmed: 19463901
Dev Neurobiol. 2015 Nov;75(11):1189-203
pubmed: 25649879
J Physiol. 2013 Nov 15;591(22):5445-51
pubmed: 23339177

Auteurs

Baruch Haimson (B)

Department of Medical Neurobiology, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel.

Yoav Hadas (Y)

Department of Medical Neurobiology, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel.

Nimrod Bernat (N)

Department of Medical Neurobiology, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel.

Artur Kania (A)

Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada.

Monica A Daley (MA)

Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States.

Yuval Cinnamon (Y)

Institute of Animal Science Poultry and Aquaculture Sci. Dept. Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.

Aharon Lev-Tov (A)

Department of Medical Neurobiology, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel.

Avihu Klar (A)

Department of Medical Neurobiology, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH