A review of the osteoderms of lizards (Reptilia: Squamata).
Squamata
armour
dermal skeleton
development
evolution
function
lizard
osteoderms
Journal
Biological reviews of the Cambridge Philosophical Society
ISSN: 1469-185X
Titre abrégé: Biol Rev Camb Philos Soc
Pays: England
ID NLM: 0414576
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
revised:
30
07
2021
received:
28
12
2020
accepted:
03
08
2021
pubmed:
17
8
2021
medline:
24
3
2022
entrez:
16
8
2021
Statut:
ppublish
Résumé
Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non-overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two-layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this 'bony armour' might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro- and macrostructure, development, and function, with a view to stimulating further work.
Identifiants
pubmed: 34397141
doi: 10.1111/brv.12788
pmc: PMC9292694
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-19Informations de copyright
© 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Références
J Morphol. 1990 Oct;206(1):25-43
pubmed: 29865751
Proc Biol Sci. 2018 Jun 13;285(1880):
pubmed: 29899068
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5317-22
pubmed: 27114549
Anat Rec (Hoboken). 2014 Feb;297(2):240-60
pubmed: 24376217
J Anat. 2009 Apr;214(4):441-64
pubmed: 19422424
J Therm Biol. 2017 Oct;69:39-53
pubmed: 29037404
Anat Rec (Hoboken). 2018 Apr;301(4):581-606
pubmed: 29232500
Biol Rev Camb Philos Soc. 1990 Aug;65(3):277-373
pubmed: 2205303
Evol Dev. 2007 May-Jun;9(3):267-77
pubmed: 17501750
Syst Biol. 2005 Aug;54(4):530-47
pubmed: 16085573
J Anat. 2007 Dec;211(6):737-53
pubmed: 17944862
J Mech Behav Biomed Mater. 2018 Jun;82:218-223
pubmed: 29621689
Science. 2012 Dec 14;338(6113):1428-9
pubmed: 23239723
J Morphol. 2015 Apr;276(4):385-402
pubmed: 25640219
J Anim Ecol. 2015 Sep;84(5):1213-21
pubmed: 26104546
J Morphol. 2010 Jun;271(6):729-37
pubmed: 20101726
Bioinformatics. 2014 Aug 1;30(15):2216-8
pubmed: 24728855
J Morphol. 1980 Jul;165(1):41-54
pubmed: 30184998
Syst Biol. 2020 May 1;69(3):502-520
pubmed: 31550008
Acta Biomater. 2014 Aug;10(8):3599-614
pubmed: 24816264
Curr Biol. 2013 May 6;23(9):R338-9
pubmed: 23660349
J Morphol. 2006 Dec;267(12):1441-60
pubmed: 17103396
J Evol Biol. 2009 Jun;22(6):1153-62
pubmed: 19416416
Mater Sci Eng C Mater Biol Appl. 2014 Feb 1;35:441-8
pubmed: 24411399
J Mech Behav Biomed Mater. 2011 Oct;4(7):1440-51
pubmed: 21783154
J Anat. 2019 Aug;235(2):313-345
pubmed: 31125128
PLoS One. 2015 Apr 22;10(4):e0123503
pubmed: 25901727
J Morphol. 2008 Apr;269(4):398-422
pubmed: 17960802
J Morphol. 2015 Nov;276(11):1345-57
pubmed: 26248595
J Exp Zool B Mol Dev Evol. 2005 Nov 15;304(6):558-69
pubmed: 15968684
Bioinformatics. 2019 Feb 1;35(3):526-528
pubmed: 30016406
Soft Matter. 2015 Apr 7;11(13):2547-54
pubmed: 25715866
J Comp Physiol B. 2008 Feb;178(2):133-48
pubmed: 17940776
PeerJ. 2017 Feb 7;5:e2955
pubmed: 28194313
Acta Biomater. 2013 Nov;9(11):9049-64
pubmed: 23891812
Acta Biomater. 2017 Jun;55:360-372
pubmed: 28323175
Evolution. 2016 Nov;70(11):2647-2656
pubmed: 27596628
Acta Anat (Basel). 1969;73(4):510-33
pubmed: 5374552
J Morphol. 2015 Nov;276(11):1333-44
pubmed: 26267236
J Mech Behav Biomed Mater. 2015 May;45:175-82
pubmed: 25732181
J Mech Behav Biomed Mater. 2011 Jul;4(5):699-712
pubmed: 21565718
J Morphol. 2011 Oct;272(10):1192-203
pubmed: 21630321
Acta Biomater. 2013 Apr;9(4):5890-902
pubmed: 23271040
Anat Rec (Hoboken). 2014 Mar;297(3):545-59
pubmed: 24482393
Nat Commun. 2019 Dec 10;10(1):5413
pubmed: 31822663
Proc Biol Sci. 2012 Aug 7;279(1740):3035-40
pubmed: 22535781
Nat Commun. 2011 Nov 29;2:564
pubmed: 22127060
Zootaxa. 2016 Jan 07;4061(3):201-26
pubmed: 27395495
J Mech Behav Biomed Mater. 2017 Aug;72:261-267
pubmed: 28511106
Acta Biomater. 2020 Apr 15;107:194-203
pubmed: 32109598
Mol Phylogenet Evol. 2015 Feb;83:250-7
pubmed: 25450099
BMC Evol Biol. 2014 Dec 12;14:249
pubmed: 25496280
Mol Phylogenet Evol. 2016 Jan;94(Pt B):537-547
pubmed: 26475614
Anat Rec (Hoboken). 2018 Jan;301(1):56-76
pubmed: 28837758
J Exp Zool B Mol Dev Evol. 2018 Dec;330(8):438-453
pubmed: 30637919
J Mech Behav Biomed Mater. 2017 Oct;74:189-194
pubmed: 28605722
Comp Biochem Physiol. 1962 Apr;5:327-30
pubmed: 14032263
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11356-61
pubmed: 15272073
PLoS One. 2017 Sep 13;12(9):e0184414
pubmed: 28902864
J Morphol. 1985 Dec;186(3):327-342
pubmed: 29991191
Am J Anat. 1986 Aug;176(4):437-46
pubmed: 3751949
Nat Commun. 2013;4:2107
pubmed: 23836118
J Morphol. 2020 Feb;281(2):213-228
pubmed: 31883155
Adv Mater. 2013 Jan 4;25(1):31-48
pubmed: 23161399
Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:1143-1167
pubmed: 26652472
J Exp Biol. 2003 Oct;206(Pt 20):3601-6
pubmed: 12966051
J Morphol. 2006 Nov;267(11):1273-83
pubmed: 17051548
Acta Biomater. 2015 Dec;28:2-12
pubmed: 26391496
J Anat. 1968 Nov;103(Pt 3):527-38
pubmed: 5683997
PLoS One. 2015 Jun 04;10(6):e0126074
pubmed: 26042667
J Morphol. 2021 Feb;282(2):230-246
pubmed: 33165963
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 2;375(1793):20190132
pubmed: 31928197
Biol Open. 2013 Sep 16;2(11):1171-8
pubmed: 24244853
J Anat. 2020 Jun;236(6):1035-1043
pubmed: 31986227
PeerJ. 2017 Nov 29;5:e4066
pubmed: 29201564
Anat Rec (Hoboken). 2019 Oct;302(10):1675-1680
pubmed: 31177617
J Anat. 2009 Apr;214(4):409-40
pubmed: 19422423
Chem Soc Rev. 2016 Jan 21;45(2):252-67
pubmed: 26377507
Acta Biomater. 2013 Feb;9(2):5289-96
pubmed: 23149253
Sci Rep. 2017 Feb 07;7:42035
pubmed: 28169348
J Morphol. 1993 Mar;215(3):225-244
pubmed: 29865442
Proc Biol Sci. 2007 Nov 22;274(1627):2829-34
pubmed: 17848370
J Mech Behav Biomed Mater. 2012 Feb;6:106-12
pubmed: 22301179
BMC Evol Biol. 2013 Apr 29;13:93
pubmed: 23627680
J Morphol. 2020 Jul;281(7):754-764
pubmed: 32427377
BMC Evol Biol. 2013 Sep 25;13:208
pubmed: 24063680
J Mech Behav Biomed Mater. 2011 Jul;4(5):713-22
pubmed: 21565719
Acta Biomater. 2018 Feb;67:319-330
pubmed: 29248639
J Evol Biol. 2012 Oct;25(10):1965-1974
pubmed: 22862551
Bioinspir Biomim. 2014 Sep;9(3):036005
pubmed: 24613857
Trends Genet. 2009 Feb;25(2):74-81
pubmed: 19108930