[Induced degradation of proteins by PROTACs and other strategies: towards promising drugs].

Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique.

Journal

Biologie aujourd'hui
ISSN: 2105-0686
Titre abrégé: Biol Aujourdhui
Pays: France
ID NLM: 101544020

Informations de publication

Date de publication:
2021
Historique:
received: 18 06 2021
entrez: 16 8 2021
pubmed: 17 8 2021
medline: 21 8 2021
Statut: ppublish

Résumé

Targeted protein degradation (TPD), discovered twenty years ago through the PROTAC technology, is rapidly developing thanks to the implication of many scientists from industry and academia. PROTAC chimeras are heterobifunctional molecules able to link simultaneously a protein to be degraded and an E3 ubiquitin ligase. This allows the protein ubiquitination and its degradation by 26S proteasome. PROTACs have evolved from small peptide molecules to small non-peptide and orally available molecules. It was shown that PROTACs are capable to degrade proteins considered as "undruggable" i.e. devoid of well-defined pockets and deep grooves possibly occupied by small molecules. Among these "hard to drug" proteins, several can be degraded by PROTACs: scaffold proteins, BAF complex, transcription factors, Ras family proteins. Two PROTACs are clinically tested for breast (ARV471) and prostate (ARV110) cancers. The protein degradation by proteasome is also induced by other types of molecules: molecular glues, hydrophobic tagging (HyT), HaloPROTACs and homo-PROTACs. Other cellular constituents are eligible to induced degradation: RNA-PROTACs for RNA binding proteins and RIBOTACs for degradation of RNA itself (SARS-CoV-2 RNA). TPD has recently moved beyond the proteasome with LYTACs (lysosome targeting chimeras) and MADTACs (macroautophagy degradation targeting chimeras). Several techniques such as screening platforms together with mathematical modeling and computational design are now used to improve the discovery of new efficient PROTACs. Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique. Alors que, pour la plupart, les médicaments actuels sont de petites molécules inhibant l’action d’une protéine en bloquant un site d’interaction, la dégradation ciblée des protéines, découverte il y a une vingtaine d’années via les petites molécules PROTAC, connaît aujourd’hui un très grand développement, aussi bien au niveau universitaire qu’industriel. Cette dégradation ciblée permet de contrôler la concentration intracellulaire d’une protéine spécifique comme peuvent le faire les techniques basées sur les acides nucléiques (oligonucléotides antisens, ARNsi, CRISPR-Cas9). Les molécules PROTAC sont des chimères hétéro-bifonctionnelles capables de lier simultanément une protéine spécifique devant être dégradée et une E3 ubiquitine ligase. Les PROTAC sont donc capables de provoquer l’ubiquitinylation de la protéine ciblée et sa dégradation par le protéasome 26S. De nature peptidique, puis non peptidique, les PROTAC sont maintenant administrables par voie orale. Ce détournement du système ubiquitine protéasome permet aux molécules PROTAC d’élargir considérablement le champ des applications thérapeutiques puisque l’élimination de protéines dépourvues de poches ou de crevasses bien définies, dites difficiles à cibler, devient possible. Cette technologie versatile a conduit à la dégradation d’une grande variété de protéines comme des facteurs de transcription, des sérine/thréonine/tyrosine kinases, des protéines de structure, des protéines cytosoliques, des lecteurs épigénétiques. Certaines ligases telles que VHL, MDM2, cereblon et IAP sont couramment utilisées pour être recrutées par les PROTAC. Actuellement, le nombre de ligases pouvant être utilisées ainsi que la nature des protéines dégradées sont en constante augmentation. Deux PROTAC sont en étude clinique pour les cancers du sein (ARV471) et de la prostate (ARV110). La dégradation spécifique d’une protéine par le protéasome peut aussi être induite par d’autres types de molécules synthétiques : colles moléculaires, marqueurs hydrophobes, HaloPROTAC, homo-PROTAC. D’autres constituants cellulaires sont aussi éligibles à une dégradation induite : ARN-PROTAC pour les protéines se liant à l’ARN et RIBOTAC pour la dégradation de l’ARN lui-même comme celui du SARS-CoV-2. Des dégradations induites en dehors du protéasome sont aussi connues : LYTAC, pour des chimères détournant la dégradation de protéines extracellulaires vers les lysosomes, et MADTAC, pour des chimères détournant la dégradation par macroautophagie. Plusieurs techniques, en particulier des plates-formes de criblage, la modélisation mathématique et la conception computationnelle sont utilisées pour le développement de nouveaux PROTAC efficaces.

Autres résumés

Type: Publisher (fre)
Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique.

Identifiants

pubmed: 34397373
doi: 10.1051/jbio/2021007
pii: jbio210007
doi:

Substances chimiques

Antineoplastic Agents 0
Neoplasm Proteins 0
RNA-Binding Proteins 0
Recombinant Fusion Proteins 0
RNA 63231-63-0
Ubiquitin-Protein Ligases EC 2.3.2.27
Proteasome Endopeptidase Complex EC 3.4.25.1

Types de publication

Journal Article

Langues

fre

Sous-ensembles de citation

IM

Pagination

25-43

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© Société de Biologie, 2021.

Références

Adjei, A.A. (2006). What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J Clin Oncol, 24, 4054-4055.
Alabi, S.B., Crews, C.M. (2021). Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem, 296, 100647.
An, S., Fu, L. (2018). Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedecine, 36, 553-562.
Bai, L., Zhou, H., Xu, R., Zhao, Y., Chinnaswamy, K., McEachern, D., Chen, J., Yang, C.Y., Liu, Z., Wang, M., Liu, L., Jiang, H., Wen, B., Kumar, P., Meagher, J.L., Sun, D., Stuckey, J.A., Wang, S.A. (2019). Potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 36, 498-511.e1.
Banik, S.M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N.M., Bertozzi C.R., (2020). Lysosome-targeting chimeras for degradation of extracellular proteins. Nature, 584, 291-297.
Blaquiere, N., Villemure, E., Staben, S.T. (2020). Medicinal chemistry of inhibiting RING-type E3 ubiquitin ligases. J Med Chem, 63, 7957-7985.
Bond, M.J., Crews, C.M. (2021). Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RCS Chem Biol. DOI: 10.1039/D1CB00011J.
Bondeson, D.P., Mares, A., Smith, I.E.D., Ko, E., Campos, S., Miah, A.H., Mulholland, K.E., Routly, N., Buckley, D.L., Gustafson, J.L., Zinn, N., Grandi, P., Shimamura, S., Bergamini, G., Faelth-Savitski, M., Bantscheff, M., Cox, C., Gordon, D.A., Willard, R.R., Flanagan, J.F., Casillas, L.N., Votta, B.J., Den Besten, W., Famm, K., Kruidenier, L., Carter, P.S., Harling, J.D., Churcher, I., Crews, C.M. (2015). Catalyticin vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol, 11, 611-617.
Bondeson, D.P., Smith, B.E., Burslem, G.M., Buhimschi, A.D., Hines, J., Jaime-Figueroa, S., Wang, J., Hamman, B.D., Ishchenko, A., Crews, C.M. (2018). Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol, 25(1), 78-87.
Bowen, T.S., Adams, V., Werner, S., Fischer, T., Vinke, P., Brogger, M.N., Mangner, N., Linke, A., Sehr, P., Lewis, J., Labeit D., Gasch, A., Labeit, S. (2017). Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia. J Cachexia Sarcopenia Muscle, 8, 939-953.
Buckley, D.L., Raina, K., Darricarrere, N., Hines, J., Gustafson, J.L., Smith, I.E., Miah, A.H., Harling, J.D., Crews, C.M. (2015). HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol, 10, 1831-1837.
Burslem G.M., Crews, C.M. (2020). Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell, 181, 102-114.
Burslem, G.M., Smith, B.E., Lai, A.C., Jaime-Figueroa, S., McQuaid, D.C., Bondeson, D.P., Toure, M., Dong, H., Qian, Y., Wang, J., Crew, A.P., Hines, J., Crews, C.M. (2018). The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol, 25(1), 67-77.e63.
Chamberlain P.P. (2018). Linkers for protein degradation. Nature Chem Biol, 14, 638-641.
Chamberlain, P.P., Cathers, B.E. (2019). Cereblon modulators: low molecular weight inducers of protein degradation. Drug Discov Today, 31, 29-34.
Chamberlain, P.P., Hamann, L.G. (2019) Development of targeted protein degradation therapeutics. Nat Chem Biol, 15, 937-944.
Churcher, I. (2018). PROTAC-induced protein degradation in drug discovery: breaking the rules or just making new ones? J Med Chem, 61, 444-452.
Collins, G.A., Goldberg, A.L. (2017). The logic of the 26S proteasome. Cell, 169, 792-806.
Conde, J., Artzi, N. (2015) Are RNAi and miRNA therapeutics truly dead? Trends Biotech, 33, 141-144.
Cong, L., Ran, F.A., Cox, D., Lin, S., Baretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819-823.
Costales, M.G., Suresh, B., Vishnu, K., Disney, M.D. (2019). Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Cell Chem Biol, 26, 1180-1186.
Costales, M.G., Aikawa, H., Li, Y., Childs-Disney, J.L., Abegg, D., Hoch, D.G., Velagapudi, S.P., Nakai, Y., Khan, T., Wang, K.W., Yildirim, I., Adibekian, A., Wang, E.T., Disney, M. (2020). Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc Natl Acad Sci USA, 117(5), 2406-2411.
Cromm, P.M., Crews, C.M. (2017). Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol, 2017, 1181-1190.
Cromm, P.M., Samarasinghe, K.T.G., Hines, J., Crews, C.M. (2018). Addressing kinase-independent functions of Fak via PROTAC-addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc, 140, 17019-17026.
Deng, Y., Wang, C.C., Choy, K.W., Du, Q., Chen, J., Wang, Q., Li, L., Chung, T.K.H., Tang, T. (2014). Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene, 538, 217-227.
Ding, Y., Fei, Y., Lu, B. (2020). Emerging new concepts of degrader technologies. Trends Pharmacol Sci, 41(7), 464-474.
Dharmasiri, N., Dharmasiri, S., Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature, 435, 441-445.
Drummond, M.L., Henry, A., Li, H., Williams, C.I. (2020). Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in silico methodologies. J Chem Inf Model, 60(10), 5234-5254.
Dybas, J.M., Herrmann, C., Weitzman, M.D. (2018). Ubiquitination and the interface of tumor viruses and DNA damages responses. Curr Opin Virol, 32, 40-47.
Farnaby, W., Koegl, M., Roy J., Whitworth, C., Diers, E., Trainor, N., Zollman, D., Steurer, S., Karolyi-Oezguer, J., Riedmueller, C., Gmaschitz, T., Wachter, J., Dank, C., Galant, M., Sharps, B., Rumpel, K., Traxler E., Gerstberger, T., Schnitzer, R., Petermann, O., Greb, P., Weinstabl, H., Bader, G., Zoephel, A., Weiss-Puxbaum, A., Ehrenhofer-Wolfer, K., Wohrle, S., Boehmelt, G., Rinnenthal, J., Arnhof, H., Wiechens, N., Wu, M.-Y., Owen-Hughes, T., Ettmayer, P., Pearson, M., McConnell, D.B., Ciulli, A. (2019). BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol, 15, 672-680.
Fischer, E.S., Bohm, K., Lydeard, J.R., Yang, H., Stadler, M.B., Cavadini, S., Nagel, J., Serluca, F., Acker, V., Lingaraju, G.M., Tichkule, R.B., Schebesta, M., Forrester, W.C., Schirle, M., Hassiepen, U., Ottl, J., Hild, M., Beckwith, R.E.J., Harper, J.W., Jenkins, J.L., Thomä, N.H. (2014). Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 512, 49-53.
Fisher, S.L., Phillips, A.J. (2018). Targeted protein degradation and the enzymology of degraders. Curr Opin Chem Biol, 44, 47-55.
Flanagan, J.J., Qian, Y., Gough, S.M., Andreoli, M., Bookbinder, M., Cadelina, G., Bradley, J., Rousseau, E., Chandler, J., Willard, R., Pizzano, J., Crews, C.M., Crew, A.P., Taylor, I., Houston, J. (2018). ARV-471, an oral estrogen receptor PROTAC protein degrader for breast cancer. SABCS, San Antonio, Texas, USA, 2018, December 4–8.
Gadd, M.S., Testa, A., Lucas, X., Chan, K.-H., Chen, W., Lamont, D.J., Zengerie, M., Ciulli, A. (2017). Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol, 13, 514-521.
Gandhi, A.K, Kang, J., Havens, C.G., Conklin, T., Ning, Y., Wu, L., Ito, T., Ando, H., Waldman, M.F., Thakurta, A., Klippel, A., Handa, H., Daniel, T.O., Schafer, P.H., Chopra, R. (2014). Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br J Haematol, 164(6), 811-821.
Ghidini, A., Clery, A., Halloy, F., Allain, F.H.T., Hall, J. (2021). RNA-PROTACs: degraders of RNA-binding proteins. Angew Chem Int Ed, 60(6), 3163-3169.
Gordon, D.E., Jang, G.M., et al. (125 authors). (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583, 459-468.
Haniff, H.S., Tong, Y., Liu, X., Chen, J.L., Suresh, B.M., Andrews, R.J., Peterson, J.M., O’Leary, C.A., Benhamou, R.I., Moss, W.N., Disney, M.D. (2020). Targeting the SARS-CoV‑2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders. ACS Cent Sci, 6, 1713-1721.
He, S., Ma, J., Fang, Y., Liu, Y, Wu, S., Dong, G., Wang, W., Sheng, C. (2020). Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm Sinica B. DOI: 10.1016/j.apsb.2020.11.022.
Henning, N.J., Boike, L., Jessica N., Spradlin, J.N., Ward, C.C., Belcher, B., Brittain, S.M., Hesse, M., Dovala, D., McGregor, L., McKenna, J., Tallico, J.A., Schirle, M., Nomura, D.K. (2021). Deubiquitinase-targeting chimeras for targeted protein stabilization. bioRxiv preprint. DOI: 10.1101/2021.04.30.441959.
Itoh, Y., Ishikawa, M., Naito, M., Hashimoto, Y. (2010). Protein knockdown using methyl bestatin–ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J Am Chem Soc, 132, 5820-5826.
Kargbo, R.B. (2020). SMARCA2/4 PROTAC for targeted protein degradation and Cr therapy. ACS Med Chem Lett, 11, 1797-1798.
Karim, M., Biquand, M., Declercq, M., Jacob, Y., van der Werf, S., Demeret, C. (2020). Nonproteolytic K29-linked ubiquitination of the PB2 replication protein of influenza A viruses by proviral Cullin 4-based E3 ligases. mBio, 11(2), e00305-20.
Kenten, J.H., Roberts, S.F., Lebowitz, M.S. (2000). Controlling protein levels in eukaryotic organisms using novel compounds comprising a ubiquitination recognition element and a protein binding element. WO2000047220A1.
Kim, J., Kim, H., Park, S.B. (2014). Privileged structures: efficient chemical ′′navigators′′ toward unexplored biologically relevant chemical spaces. J Am Chem Soc, 136, 14629-14638.
Konstantinidou, M., Li, J., Zhang, B., Wang, Z., Shaabani, S., Ter Brake, F., Essa, K., Dömling, A. (2019). PROTACs- a game-changing technology. Expert Opin Drug Discov, 14(12), 1255-1268
Krönke, J., Udesshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., Tanya Svinkina, T., Heckl, D., Comer, E., Li, X., Ciarlo, C., Hartman, E., Munshi, N., Schenone, M., Schreiber, S.L., Carr, S.A., Ebert B.L. (2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science, 343(6168), 301-305.
Lai, A.C., Crews, C.M. (2017). Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov, 16(2), 101-114.
Lebraud, H., Wright, D.J.J., Johnson, C.N., Heightman, T.D. (2016). Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci, 2(12), 927-934.
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and permeability in drug discovery and development settings. Adv Drug Delivery Rev, 23, 3-25.
Long, M.J., Gollapalli, D.R., Hedstrom, L. (2012). Inhibitor mediated protein degradation. Chem Biol, 19, 629-637.
Lu, G., Middelton, R.E., Sun, H., Naniong, M., Ott, C.J., Mitsiades, C.S., Wong, K.-K., Bradner, J.E., Kaelin Jr, W.G. (2014). The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 343(6168), 305-309.
Luh, L.M., Scheib, U., Juenemann, K., Wortmann, L., Brands, M., Cromm, P.M. (2020). Prey for the proteasome: targeted protein degradation – A medicinal chemist’s perspective.. Angew Chem Int Ed Engl, 59, 15448-15466.
McCoull, W., Cheung, T., Anderson, E., Barton, P., Burgess, J., Byth, K., Cao, Q., Castaldi, M.P., Chen, H., Chiarparin, E., Carbajo, R.J., Code, E., Cowan, S., Davey, P.R., Ferguson, A.D., Fillery, S., Fuller, N.O., Gao, N., Hargreaves, D., Howard, M.R., Hu, J., Kawatkar, A., Kemmitt, P.D., Leo, E., Molina, D.M., O’Connell, N., Petteruti, P., Rasmusson, T., Raubo, P., Rawlins, P.B., Ricchiuto, P., Robb, G.R., Schenone, M., Waring, M.J., Zinda, M., Fawell, S., Wilson, D.M. (2018). Development of a novel B-cell lymphoma 6 (BCL6) PROTAC to provide insight into small molecule targeting of BCL6. ACS Chem Biol, 13, 3131-3141.
Mahon, C., Krogan, N.J., Craig, C.S., Pick, E. (2014). Cullin E3 ligases and the rewiring by viral factors. Biomolecules, 4, 897-930.
Maniaci, C., Hughes, S.J., Testa, A., Wenzhang, C., Lamont, D.J., Rocha, S., Alessi, D.R., Romeo, R., Ciulli, A. (2017). Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun, 8, 830.
Min, J.H. (2002). Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling. Science, 296, 1886-1889.
Mullard, A. (2019a). Arvinas’s PROTACs Pass First Safety and PK Analysis. Nat Rev Drug Discov, 18(12), 895. DOI: 10.1038/d41573-019-00188-4.
Mullard, A. (2019b). First targeted protein degrader hits the clinic. Nat Rev Drug Discov, 18, 237-239.
Mullard, A. (2021). Targeted protein degraders crowd into the clinic. Nat Rev Drug Discov, 20, 247-250.
Neklesa, T.K., Crews, C.M. (2012). Chemical biology: greasy tags for protein removal. Nature, 487(7407), 308-309.
Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., Raina, K, Holley, S.A., Crews, C.M. (2011). Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat Chem Biol, 7(8), 538-543.
Neklesa, T., Snyder, L.B., Willard, R.R., Vitale, N., Pizzano, J., Gordon, D.A., Bookbinder, M., Macaluso, J., Dong, H., Ferraro, C., Wang, G., Wang, J., Crews, C.M., Houston, J., Crew, A.P., Taylor, I. (2019). ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J Clin Oncol, 37(7), suppl. 259, ASCO-GU: San Francisco, California, USA, February 14–16.
Nishiguchi, G., Keramatnia, F., Min, J., Chang, Y., Jonchere, B., Das, S., Actis, M., Price, J., Chepyala, D., Young, B., McGowan, B., Slavish, P.J., Mayasundari, A., Jarusiewicz, J.A., Yang, L., Yong, L., Fu, X., Garrett, S.H., Papizan, J.B., Kodali, K., Peng, J., Pruett Miller, S.M., Roussel, M.F., Mullighan, C., Fischer, M., Rankovic, Z. (2021). Identification of potent, selective, and orally bioavailable small-molecule GSPT1/2 degraders from a focused library of cereblon modulators. J Med Chem, 64, 7296-7311.
Nowak, R.P., Jones, L.H. (2021). Target validation using PROTACs: applying the four pillars framework. SLAS Discov, 26(4), 474-483.
Nowak, R.P., DeAngelo, S.L., Buckley, D., He, Z., Donovan, K.A., An, J., Safaee, N., Jedrychowski, M.P., Ponthier, C.M., Ishoey, M., Zhang T., Mancias, J.D., Gray, N.S., Bradner, J.E., Fischer, E.S. (2018). Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol, 14, 706-714.
Nunes, J., McGonagle, G.A., Eden, J., Kiritharan, G., Touzet, M., Lewell, X., Emery, J., Eidam, H., Harling, J.D., Anderson, N.A. (2019). Targeting IRAK4 for degradation with PROTACs. ACS Med Chem Lett, 10, 1081-1085.
Olson, C.M., Jiang, B., Erb, M.A., Liang, Y., Doctor, Z.M., Zhang, Z., Kwiatkowski, N., Boukhali, M., Green, J.L., Haas, W., Nomanbhoy, T., Fischer, E.S., Young, R.A., Bradner, J.E., Winter, G.E., Gray, N.S. (2018). Pharmacological per-turbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol, 14, 163-170.
Ottis, P., Crews, C.M. (2017). Proteolysis-targeting chimeras. Induced protein degradation as a therapeutic strategy. ACS Chem Biol, 12, 892-898.
Petterson, M., Crews, C.M. (2019). PROteolysis TArgeting Chimeras (PROTACs) − Past, present and future. Drug Discov Today: Technologies, 31, 15-27.
Pineda, C.T., Ramanathan, S., Fon Tacer, K., Weon, J.L., Potts, M.B., Ou, Y.H., White M.A., Potts, P.R. (2015). Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell, 160(4), 715-728.
Popow, J., Arnhof, H., Bader, G., Berger, H., Ciulli, A., Covini, D., Dank, C., Gmaschitz, T., Greb, P., Karolyi-Ozguer, J., Koegl, M., McConnell, D.B., Pearson, M., Rieger, M., Rinnenthal, J., Roessler, V., Schrenk, A., Spina, M., Steurer, S., Trainor, N., Traxler, E., Wieshofer, C., Zoephel, A., Ettmayer, P. (2019). Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J Med Chem, 62, 2508-2520.
Reboud-Ravaux, M. (2021). Le protéasome, la seconde vie d’une cible thérapeutique validée : aspects structuraux et nouveaux inhibiteurs. Biologie Aujourd’hui, 215.
Riching, K.M., Mahan, S., Corona, C.R., McDougall, M., Vasta, J.D., Robers, M.B., Urh, M., Daniels, D.L. (2018). Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem Biol, 13(9), 2758-2770.
Roy, R.D., Rosenmund, C., Stefan, M.I. (2017). Cooperative binding mitigates the high-dose hook effect. BMC Syst Biol, 11, 74-84.
Roy, M, Bader, G., Diers, E., Farnaby, W., Ciulli, A. (2019). Crystal structure of PROTAC 1 in complex with the bromodomain of human SMARCA2 and pVHL:ElonginC:ElonginB. DOI: 10.2210/pdb6HAY/pdb.
Saenz, D.T., Fiskus, W., Qian, Y., Manshouri, T., Rajapakshe, K., Raina, K., Coleman, K.G., Crew, A.P., Shen, A., Mill, C.P., Sun, B., Qiu, P., Kadia, T.M., Pemmaraju, N., DiNardo, C., Kim, M.S., Nowak, A.J., Coarfa, C., Crews, C.M., Verstovsek, S., Bhalla, K.N. (2017). Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia, 31, 1951–1961.
Salami, J., Crews, C.M. (2017). Waste disposal-an attractive strategy for cancer therapy. Science, 355, 1163-1167.
Salami, J., Alabi, S., Willard, R.R., Vitale, N.J., Wang, J., Dong, H., Jin, M., McDonnell, D.P., Crew, A.P., Neklesa, T.K., Crews, C.M. (2018). Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol, 1, 100, 1-9.
Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., Deshaies, R.J. (2001). Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA, 98, 8554-8559.
Sakamoto, K.M., Kim, K.B., Verma, R., Ransick, A., Stein, B., Crews, C.M, Deshaies, R.J. (2003). Development of protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics, 2, 1350-1358.
Schapira, M., Calabrese, M.F., Bullock, A.N., Crews, C.M. (2019). Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov, 18, 949-963.
Schiedel, M., Herp, D., Hammelmann, S., Swyter, S., Lehotzky, A., Robaa, D., Ola, J., Ovadi, J., Sippl, W., Jung, M. (2018). Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J Med Chem, 61, 482-491.
Schiemer, J., Horst, R., Meng, Y., Montgomery, J.I., Xu, Y., Feng, X., Borzilleri, K., Uccello, D.P., Leverett, C., Brown, S., Che, Y., Brown, M.F., Hayward, M.M., Gilbert, A.M., Noe, M.C., Calabrese, M.F. (2021). Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol, 17, 152-160.
Schneekloth, A.R., Pucheault, M., Tae, H.S., Crews, C.M. (2008). Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett, 18, 5904-5908.
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.-F., Sharon, M., Browse, J., He, S.Y., Rizo, J., Howe, G.A., Zheng, N. (2010). Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor. Nature, 468(7322), 400-405.
Shi, Y., Long, M.J.C., Rosenberg, M.M., Li, S., Kobjack, A., Lessans, P., Coffey, R.T., Hedstrom, L. (2016). Boc3Arg-linked ligands induce degradation by localizing target proteins to the 20S proteasome. ACS Chem Biol, 11 (12), 3328-3337.
Silva, M.C., Ferguson, F.M., Cai, Q., Donovan, K.A., Nandi, G., Patnaik, D., Zhang, T., Huang, H.-T., Lucent, D. (2019). Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife., 8, e45457.
Soares, P., Gadd, M.S., Frost, J., Galdeano, C., Ellis, L., Epemolu, O., Rocha, S., Read, K.D., Ciulli, A. (2018). Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships leading to the chemical probe (2S, 4R)-1-((S)-2-(1-cyanocyclopropane carboxamido)-3, 3-dimethyl butanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J Med Chem, 61(2), 599-618
Suh, J., Yoo, S.H., Kim, M.G., Jeong, K., Ahn, J.Y., Kim, M.S., Chae, P.S., Lee, T.Y., Lee, J., Jang, Y.A., Ko, E.H. (2007). Cleavage agents for soluble oligomers of amyloid beta peptides. Angew Chem Int Ed Engl, 46(37), 7064-7067.
Sun, Y., Ding, N., Song, Y., Yang, Z., Liu, W., Zhu, J., Rao, Y. (2019). Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia, 33, 2105-2110.
Sun, X., Wang, J., Yao, X., Zheng, W., Mao, Y., Lan, T., Wang, L., Sun, Y., Zhang, X., Zhao, Q., Zhao, J., Xiao, R.P., Zhang, X., Ji, G., Rao, Y. (2019). A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov, 5, 10. DOI: 10.1038/s41421-018-0079-1.
Taillandier, D. (2021). Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique. Biologie Aujourd’hui, 215.
Takahashi, D., Moriyama, J., Nakamura, T., Miki, E., Takahashi, E., Sato, A., Akaike, T., Itto-Nakama, K., Arimoto, H. (2019). AUTACs: cargo-specific degraders using selective autophagy. Mol Cell, 76, 797-810.
Tan, X., Calderon-Villalobos, A.C., Sharon, M., Zheng, C., Robinson, C.V., Mark, E., Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446, 640-645.
Testa, A., Lucas, X., Castro, G.V., Chan, K.-H., Wright, J.E., Runcie, A.C., Gadd, M.S., Harrison, T.A., Ko, E.-J., Fletcher, D., Ciulli, A. (2018). 3- Fluoro-4-hydroxyprolines: synthesis, conformational analysis, and stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation. J Am Chem Soc, 140, 9299-9313.
Testa, A., Hughes, S.J., Lucas, X., Wright, J.E., Ciulli, A. (2020). Structure-based design of a macrocyclic PROTAC. Angew Chem Int Ed, 59, 1727-1734.
Tomoshige, S., Hashimoto, Y., Ishikawa, M. (2016). Efficient protein knockdown of HaloTag-fused proteins using hybrid molecules consisting of IAP antagonist and HaloTag ligand. Bioorg Med Chem, 24(14), 3144-3148.
Toure, M., Crews, C.M. (2016). Small-molecule PROTACs. New approaches to protein degradation. Angew Chem Int Ed, 55, 1966–1973.
Tutland, T., Ethell, B., Kosaka, T., Blasco, F., Zang, R.X., Jain, M., Gould, T., Hoffmaster, K. (2014). Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol, 5, 174. DOI: 10.3389/fphar.2014.00174.
Valeur, E., Guéret, S.M., Adhihou, H., Gopalakrishnan, R., Lemurell, M., Waldmann, H., Grossmann, T.N., Plowright, A.T. (2017). New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl, 21(35), 10294-10323.
Walters, W.P. (2012). Going further than Lipinski’s rule in drug design. Exp Opin Drug Discovery, 7, 99-107.
Wang, Y., Jiang, X., Feng, F., Liu, W., Sun, H. (2020). Degradation of proteins by PROTACs and other strategies. Act Pharm Sin B, 10(2), 207-238.
Watt, G.F, Scoot-Stevens, P., Gaohua, L. (2019). Targeted protein degradation in vivo with proteolysis targeting chimeras: current status and future considerations. Drug Disc Today, 31, 69-80.
Winter, G.E., Buckley, D.L., Paulk, J., Roberts, J.M., Souza, A., Dhe-Paganon, S., Bardner, J.E. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 348, 1376-1381.
Wu, P., Nielsen, T.E., Clausen, M.H. (2015). FDA-approved small- molecule kinase inhibitors. Trends Pharmacol Sci, 36, 422-439.
Wu, H.Q., Baker, D., Ovaa, H. (2020). Small molecules that target the ubiquitin system. Biochem Soc Trans, 48, 479-497.
Zaidman, D., Prilusky, J., London, N. (2020). PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J Chem Inf Model, 60, 4894-4903.
Zheng, N., Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 86, 129-157.
Zorba, A., Nguyen, C., Xu, Y., Starr, J., Borzilleri, K., Smith, J., Zhu, H., Farley, K.A., Ding, W., Schiemer, J., Feng, X., Chang, J.S., Uccello, D.P., Young, J.A., Garcia-Irrizary, C.N., Czabaniuk, L., Schuff, B., Oliver, R., Montgomery, J., Hayward, M.M., Coe, J., Chen, J., Niosi, M., Luthra, S., Shah, J.C., El-Kattan, A., Qiu, X., West, G.M., Noe, M.C., Shanmugasundaram, V., Gilbert, A.M., Brown, M.F., Calabrese, M.F. (2018). Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA, 115, E7285-E7292.
Zou, Y., Ma, D., Wang, Y. (2019). The PROTAC technology in drug development. Cell Biochem Funct, 37, 21-30.

Auteurs

Michèle Reboud-Ravaux (M)

Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint-Bernard, 75252 Paris Cedex 05, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH