Comparison of calcium and hydroxyl ion release ability and in vivo apatite-forming ability of three bioceramic-containing root canal sealers.

Apatite-forming ability Bioceramic-containing root canal sealer Calcium ion release Electron probe microanalyzer Hydroxyl ion release Subcutaneous implantation

Journal

Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 30 04 2021
accepted: 30 07 2021
pubmed: 17 8 2021
medline: 9 2 2022
entrez: 16 8 2021
Statut: ppublish

Résumé

Bioceramic-containing root canal sealers promote periapical healing via Ca Polytetrafluoroethylene tubes filled with sealers were immersed in distilled water for 6 and 12 h and for 1, 7, 14, and 28 days to measure Ca Endo-BC released significantly more Ca Ca Endo-BC could promote faster periapical healing than MTA-F and N-BG.

Identifiants

pubmed: 34398328
doi: 10.1007/s00784-021-04118-w
pii: 10.1007/s00784-021-04118-w
doi:

Substances chimiques

Apatites 0
Calcium Compounds 0
Drug Combinations 0
Epoxy Resins 0
Hydroxides 0
Root Canal Filling Materials 0
Silicates 0
hydroxide ion 9159UV381P
Calcium SY7Q814VUP

Types de publication

Journal Article

Langues

eng

Pagination

1443-1451

Subventions

Organisme : Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science
ID : 19k19020

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Schilder H (1974) Cleaning and shaping the root canal. Dent Clin North Am 18:269–296
pubmed: 4522570
Washio A, Morotomi T, Yoshii S, Kitamura C (2019) Bioactive glass-based endodontic sealer as a promising root canal filling material without semisolid core materials. Materials 12:3967. https://doi.org/10.3390/ma12233967
doi: 10.3390/ma12233967 pmcid: 6926972
Trope M, Bunes A, Debelian G (2015) Root filling materials and techniques: bioceramics a new hope? Endod Top 32:86–96. https://doi.org/10.1111/etp.12074
doi: 10.1111/etp.12074
Zamparini F, Siboni F, Prati C, Taddei P, Gandolfi MG (2019) Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide. Clin Oral Investig 23:445–457. https://doi.org/10.1007/s00784-018-2453-7
doi: 10.1007/s00784-018-2453-7 pubmed: 29737429
Lee MN, Hwang HS, Oh SH, Roshanzadeh A, Kim JW, Song JH, Kim ES, Koh JT (2018) Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med 50:1–16. https://doi.org/10.1038/s12276-018-0170-6
doi: 10.1038/s12276-018-0170-6 pubmed: 30523262 pmcid: 6283868
Maeda H, Nakano T, Tomokiyo A, Fujii S, Wada N, Monnouchi S, Hori K, Akamine A (2010) Mineral trioxide aggregate induces bone morphogenetic protein-2 expression and calcification in human periodontal ligament cells. J Endod 36:647–652. https://doi.org/10.1016/j.joen.2009.12.024
doi: 10.1016/j.joen.2009.12.024 pubmed: 20307738
Galow AM, Rebl A, Koczan D, Bonk SM, Baumann W, Gimsa J (2017) Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem Biophys Reports 10:17–25. https://doi.org/10.1016/j.bbrep.2017.02.001
doi: 10.1016/j.bbrep.2017.02.001
Muramatsu T, Kashiwagi S, Ishizuka H, Matsuura Y, Furusawa M, Kimura M, Shibukawa Y (2019) Alkaline extracellular conditions promote the proliferation and mineralization of a human cementoblast cell line. Int Endod J 52:639–645. https://doi.org/10.1111/iej.13044
doi: 10.1111/iej.13044 pubmed: 30447154
Ricucci D, Grande NM, Plotino G, Tay FR (2020) Histologic response of human pulp and periapical tissues to tricalcium silicate–based materials: a series of successfully treated cases. J Endod 46:307–317. https://doi.org/10.1016/j.joen.2019.10.032
doi: 10.1016/j.joen.2019.10.032 pubmed: 31836137
Komabayashi T, Colmenar D, Cvach N, Bhat A, Primus C, Imai Y (2020) Comprehensive review of current endodontic sealers. Dent Mater J 39:703–720. https://doi.org/10.4012/dmj.2019-288
doi: 10.4012/dmj.2019-288 pubmed: 32213767
Washio A, Miura H, Morotomi T, Ichimaru-Suematsu M, Miyahara H, Hanada-Miyahara K, Yoshii S, Murata K, Takakura N, Akao E, Fujimoto M, Matsuyama A, Kitamura C (2020) Effect of bioactive glass-based root canal sealer on the incidence of postoperative pain after root canal obturation. Int J Environ Res Public Health 17:8857. https://doi.org/10.3390/ijerph17238857
doi: 10.3390/ijerph17238857 pmcid: 7730492
Aslan T, Dönmez Özkan H (2021) The effect of two calcium silicate-based and one epoxy resin-based root canal sealer on postoperative pain: a randomized controlled trial. Int Endod J 54:190–197. https://doi.org/10.1111/iej.13411
doi: 10.1111/iej.13411 pubmed: 32929721
Lee JK, Kwak SW, Ha JH, Lee W, Kim HC (2017) Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorg Chem Appl 2017:25828492017. https://doi.org/10.1155/2017/2582849
doi: 10.1155/2017/2582849
Xuereb M, Vella P, Damidot D, Sammut CV, Camilleri J (2015) In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod 41:111–124. https://doi.org/10.1016/j.joen.2014.09.015
doi: 10.1016/j.joen.2014.09.015 pubmed: 25442723
Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M (2013) Physical properties of 5 root canal sealers. J Endod 39:1281–1286. https://doi.org/10.1016/j.joen.2013.06.012
doi: 10.1016/j.joen.2013.06.012 pubmed: 24041392
Hanada K, Morotomi T, Washio A, Yada N, Matsuo K, Teshima H, Yokota K, Kitamura C (2019) In vitro and in vivo effects of a novel bioactive glass-based cement used as a direct pulp capping agent. J Biomed Mater Res - Part B Appl Biomater 107:161–168. https://doi.org/10.1002/jbm.b.34107
doi: 10.1002/jbm.b.34107
Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG (2017) Properties of bioroot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J 50:e120–e136. https://doi.org/10.1111/iej.12856
doi: 10.1111/iej.12856 pubmed: 28881478
International Organization for Standardization (2014) International standard: ISO 23317:2014(E) Implants for surgery—In vitro evaluation for apatite-forming ability of implant materials. ISO, Geneva.  https://www.iso.org/obp/ui/#iso:std:iso:23317:ed-3:v1:en
Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T (2017) Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation. Int Endod J 50:e40–e51. https://doi.org/10.1111/iej.12802
doi: 10.1111/iej.12802 pubmed: 28649791
Bin JS, Kim HK, Lee HN, Kim YJ, Patel KD, Knowles JC, Lee JH, Song M (2020) Physical properties and biofunctionalities of bioactive root canal sealers in vitro. Nanomaterials 10:1–19. https://doi.org/10.3390/nano10091750
doi: 10.3390/nano10091750
Braga RR, About I (2019) How far do calcium release measurements properly reflect its multiple roles in dental tissue mineralization? Clin Oral Investig 23:501. https://doi.org/10.1007/s00784-018-2789-z
doi: 10.1007/s00784-018-2789-z pubmed: 30612242
Camilleri J (2007) Hydration mechanisms of mineral trioxide aggregate. Int Endod J 40:462–470. https://doi.org/10.1111/j.1365-2591.2007.01248.x
doi: 10.1111/j.1365-2591.2007.01248.x pubmed: 17459120
Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
doi: 10.1111/j.1151-2916.1991.tb07132.x
Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non Cryst Solids 143:84–92. https://doi.org/10.1016/S0022-3093(05)80556-3
doi: 10.1016/S0022-3093(05)80556-3
Jones JR, Sepulveda P, Hench LL (2001) Dose-dependent behavior of bioactive glass dissolution. J Biomed Mater Res 58:720–726. https://doi.org/10.1002/jbm.10053
doi: 10.1002/jbm.10053 pubmed: 11745526
Formosa LM, Mallia B, Bull T, Camilleri J (2012) The microstructure and surface morphology of radiopaque tricalcium silicate cement exposed to different curing conditions. Dent Mater 28:584–595. https://doi.org/10.1016/j.dental.2012.02.006
doi: 10.1016/j.dental.2012.02.006 pubmed: 22410112
Han L, Okiji T, Okawa S (2010) Morphological and chemical analysis of different precipitates on mineral trioxide aggregate immersed in different fluids. Dent Mater J 29:512–517. https://doi.org/10.4012/dmj.2009-133
doi: 10.4012/dmj.2009-133 pubmed: 20823620
Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373. https://doi.org/10.1016/j.biomaterials.2004.11.022
doi: 10.1016/j.biomaterials.2004.11.022 pubmed: 15701365
Meschi N, Li X, Van Gorp G, Camilleri J, Van Meerbeek B, Lambrechts P (2019) Bioactivity potential of Portland cement in regenerative endodontic procedures: from clinic to lab. Dent Mater 35:1342–1350. https://doi.org/10.1016/j.dental.2019.07.004
doi: 10.1016/j.dental.2019.07.004 pubmed: 31345561
Moinzadeh AT, Aznar Portoles C, Schembri Wismayer P, Camilleri J (2016) Bioactivity potential of endo sequence BC RRM putty. J Endod 42:615–621. https://doi.org/10.1016/j.joen.2015.12.004
doi: 10.1016/j.joen.2015.12.004 pubmed: 26786381
Wang K, Leng Y, Lu X, Ren F, Ge X, Ding Y (2012) Theoretical analysis of protein effects on calcium phosphate precipitation in simulated body fluid. CrystEngComm 14:5870–5878. https://doi.org/10.1039/c2ce25216c
doi: 10.1039/c2ce25216c
Tagaya M, Ikoma T, Takeguchi M, Hanagata N, Tanaka J (2011) Interfacial serum protein effect on biological apatite growth. J Phys Chem C 115:22523–22533. https://doi.org/10.1021/jp208104z
doi: 10.1021/jp208104z
Lu X, Leng Y (2005) Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26:1097–1108. https://doi.org/10.1016/j.biomaterials.2004.05.034
doi: 10.1016/j.biomaterials.2004.05.034 pubmed: 15451629
Wang K, Zhou C, Hong Y, Zhang X (2012) A review of protein adsorption on bioceramics. Interface Focus 2:259–277. https://doi.org/10.1098/rsfs.2012.0012
doi: 10.1098/rsfs.2012.0012 pubmed: 23741605 pmcid: 3363020
Ha JH, Kim HC, Kim YK, Kwon TY (2018) An evaluation of wetting and adhesion of three bioceramic root canal sealers to intraradicular human dentin. Materials 11:1286. https://doi.org/10.3390/ma11081286
doi: 10.3390/ma11081286 pmcid: 6117688
Liu P, Feng C, Wang F, Gao Y, Yang J, Zhang W, Yang L (2018) Hydrophobic and water-resisting behavior of Portland cement incorporated by oleic acid modified fly ash. Mater Struct Constr 51:1–9. https://doi.org/10.1617/s11527-018-1161-8
doi: 10.1617/s11527-018-1161-8

Auteurs

Razi Saifullah Ibn Belal (RS)

Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.

Naoki Edanami (N)

Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan. edanami@dent.niigata-u.ac.jp.

Kunihiko Yoshiba (K)

Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.

Nagako Yoshiba (N)

Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.

Naoto Ohkura (N)

Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.

Shoji Takenaka (S)

Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.

Yuichiro Noiri (Y)

Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH