Multi-target drug with potential applications: violacein in the spotlight.
Biological activities
Chromobacterium violaceum
Genome
Production
Violacein
Journal
World journal of microbiology & biotechnology
ISSN: 1573-0972
Titre abrégé: World J Microbiol Biotechnol
Pays: Germany
ID NLM: 9012472
Informations de publication
Date de publication:
16 Aug 2021
16 Aug 2021
Historique:
received:
23
04
2021
accepted:
02
08
2021
entrez:
16
8
2021
pubmed:
17
8
2021
medline:
15
12
2021
Statut:
epublish
Résumé
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Identifiants
pubmed: 34398340
doi: 10.1007/s11274-021-03120-4
pii: 10.1007/s11274-021-03120-4
doi:
Substances chimiques
Anti-Infective Agents
0
Antineoplastic Agents
0
Cosmetics
0
Indoles
0
violacein
QJH0DSQ3SG
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
151Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Agematu H, Suzuki K, Tsuya H (2011) Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil. Biosci Biotechnol Biochem 75(10):2008–2010. https://doi.org/10.1271/bbb.100729
doi: 10.1271/bbb.100729
pubmed: 21979084
Ahmad WA, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF (2012) Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl Biochem Biotechnol 167(5):1220–1234. https://doi.org/10.1007/s12010-012-9553-7
doi: 10.1007/s12010-012-9553-7
pubmed: 22278051
Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S (2020) Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J Microbiol Biotechnol 36:120. https://doi.org/10.1007/s11274-020-02893-4
doi: 10.1007/s11274-020-02893-4
pubmed: 32681377
Alshatwi AA, Subash-Babu P, Antonisamy P (2016) Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp Toxicol Pathol 68:89–97. https://doi.org/10.1016/j.etp.2015.10.002
doi: 10.1016/j.etp.2015.10.002
pubmed: 26521020
Antonisamy P, Kannan P, Aravinthan A, Duraipandiyan V, Arasu MV, Ignacimuthu S, Al-Dhabi NA, Kim JH (2014) Gastroprotective activity of violacein isolated from Chromobacterium violaceum on indomethacin-induced gastric lesions in rats: investigation of potential mechanisms of action. Sci World J. https://doi.org/10.1155/2014/616432
doi: 10.1155/2014/616432
Aranda S, Montes-Borrego M, Landa BB (2011) Purple-pigmented violacein-producing Duganella spp. inhabits the rhizosphere of wild and cultivated olives in Southern Spain. Microb Ecol 62:446–459. https://doi.org/10.1007/s00248-011-9840-9
doi: 10.1007/s00248-011-9840-9
pubmed: 21424823
Arif S, Batool A, Khalid N, Ahmed I, Janjua HA (2017) Comparative analysis of stability and biological activities of violacein and starch capped silver nanoparticles. RSC Adv 7:4468–4478. https://doi.org/10.1039/C6RA25806A
doi: 10.1039/C6RA25806A
Aruldass CA, Rubiyatno VCK, Ahmad WA (2015) Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Adv 5:51524–51536. https://doi.org/10.1039/C5RA05765E
doi: 10.1039/C5RA05765E
Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA (2018) Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ Sci Pollut Res 25:5164–5180. https://doi.org/10.1007/s11356-017-8855-2
doi: 10.1007/s11356-017-8855-2
Atalah J, Blamey L, Munoz-Ibacache S, Gutierrez F, Urzua M, Encinas MV, Páez M, Sun J, Blamey JM (2020) Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 24:43–52. https://doi.org/10.1007/s00792-019-01111-w
doi: 10.1007/s00792-019-01111-w
pubmed: 31324985
Avguštin JA, Bertok DZ, Kostanjšek R, Avguštin G (2013) Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov”, Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 103:763–769. https://doi.org/10.1007/s10482-012-9858-0
doi: 10.1007/s10482-012-9858-0
Aye AM, Bonnin-Jusserand M, Brian-Jaisson F, Ortalo-Magne A, Culioli G, Nevry RK, Rabah N, Blache Y, Molmeret M (2015) Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology 161:2039–2052. https://doi.org/10.1099/mic.0.000147
doi: 10.1099/mic.0.000147
Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, Ben Marzouk-Hidalgo OJ, Chandra R, Dimopoulos G (2014) Exploring anopheles gut bacteria for plasmodium blocking activity. Environ Microbiol 16:2980–2994. https://doi.org/10.1111/1462-2920.12381
doi: 10.1111/1462-2920.12381
pubmed: 24428613
pmcid: 4099322
Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D, Bazzicalupo P, Di Schiavi E, Egan S (2014) Antinematode activity of violacein and the role of the insulin/IGF-1 pathway in controlling violacein sensitivity in Caenorhabditis elegans. PLoS ONE 8:e109201. https://doi.org/10.1371/journal.pone.0109201
doi: 10.1371/journal.pone.0109201
Ballestriero F, Nappi J, Zampi G, Bazzicalupo P, Di Schiavi E, Egan S (2016) Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein. Sci Rep 6:29284. https://doi.org/10.1038/srep29284
doi: 10.1038/srep29284
pubmed: 27384057
pmcid: 4935850
Barreto ES, Torres AR, Barreto MR, Vasconcelos ATR, Astolfi-Filho S, Hungria M (2008) Diversity in antifungal activity of strains of Chromobacterium violaceum from the Brazilian Amazon. J Ind Microbiol Biotechnol 35:783–790. https://doi.org/10.1007/s10295-008-0331-z
doi: 10.1007/s10295-008-0331-z
pubmed: 18347828
Batista AHM, Moreira ACD, de Carvalho RM, Sales GWP, Nogueira PCN, Grangeiro TB, Medeiros SC, Silveira ER, Nogueira NAP (2017) Antimicrobial effects of violacein against planktonic cells and biofilms of Staphylococcus aureus. Molecules 22:1534. https://doi.org/10.3390/molecules22101534
doi: 10.3390/molecules22101534
pmcid: 6151432
Batista JH, Leal FC, Fukuda TTH, Alcoforado Diniz J, Almeida F, Pupo MT, da Silva Neto JF (2020) Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in Chromobacterium violaceum. Environ Microbiol 22(6):2432–2442. https://doi.org/10.1111/1462-2920.15033
doi: 10.1111/1462-2920.15033
pubmed: 32329144
Berti IG, Rodenak-Kladniew B, Perez AA, Santiago L, Durán N, Castro RG (2019) Development of biocarrier for violacein controlled release in the treatment of cancer. React Funct Polym 136:122–130. https://doi.org/10.1016/j.reactfunctpolym.2019.01.001
doi: 10.1016/j.reactfunctpolym.2019.01.001
Berti IR, Rodenak-Kladniew BR, Onaindia C, Adam CG, Islan GA, Durán N, Castro GR (2020) Assessment of in vitro cytotoxicity of imidazole ionic liquids and inclusion in targeted drug carriers containing violacein. RSC Adv 10:29336–29346. https://doi.org/10.1039/d0ra05101b
doi: 10.1039/d0ra05101b
Bettina AM, Doing G, O’Brien K, Perron GG, Jude BA (2018) Draft genome sequences of phenotypically distinct Janthinobacterium sp. isolates cultured from the Hudson Valley Watershed. Genome Announc 6:e01426-e1517. https://doi.org/10.1128/genomeA.01426-17
doi: 10.1128/genomeA.01426-17
pubmed: 29348334
pmcid: 5773719
Bilsland E, Tavella TA, Krogh R, Stokes JE, Roberts A, Ajioka J, David R, Spring DR, Andricopulo AD, Costa FTM, Oliver SG (2018) Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons. BMC Biotechnol 18:22. https://doi.org/10.1186/s12896-018-0428-z
doi: 10.1186/s12896-018-0428-z
pubmed: 29642881
pmcid: 5896143
Blackburn MB, Farrar RR Jr, Sparks ME, Kuhar D, Mitchell A, Gundersen-Rindal DE (2017) Chromobacterium sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs. Int J Syst Evol Microbiol 67:3417–3422. https://doi.org/10.1099/ijsem.0.002127
doi: 10.1099/ijsem.0.002127
pubmed: 28829025
Blackburn MB, Gundersen-Rindal DE, Farrar RR, Kuhar DJ, Mitchell AD (2018) Chromobacterium species with insecticidal activity. US Patent 0103646 A1
Blount BA, Gowers G-OF, Ho JCH, Ledesma-Amaro R, Jovicevic D, McKiernan RM, Xie ZX, Li BZ, Yuan YJ, Ellis T (2018) Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9:1932. https://doi.org/10.1038/s41467-018-03143-w
doi: 10.1038/s41467-018-03143-w
pubmed: 29789540
pmcid: 5964169
Boisbaudran LD (1882) Matiere colarante se formant dans la colle de farine. C R Acad Biol 94:562–563
Brazilian National Genome Project Consortium (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci USA 100:11660–11665. https://doi.org/10.1073/pnas.1832124100
doi: 10.1073/pnas.1832124100
Bromberg N, Dreyfuss JL, Regatieri CV, Palladino MV, Durán N, Nader HB, Haun M, Justo GZ (2010) Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem Biol Interact 186:43–52. https://doi.org/10.1016/j.cbi.2010.04.016
doi: 10.1016/j.cbi.2010.04.016
pubmed: 20416285
Brucker RM, Baylor CM, Walters RL, Lauer A, Harris RN, Minbiole KPC (2008a) The identification of 2,4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus. J Chem Ecol 34:39–43. https://doi.org/10.1007/s10886-007-9352-8
doi: 10.1007/s10886-007-9352-8
pubmed: 18058176
Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, Minbiole KPC (2008b) Amphibian chemical defense: antifungal metabolites of the micro-symbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429. https://doi.org/10.1007/s10886-008-9555-7
doi: 10.1007/s10886-008-9555-7
pubmed: 18949519
Canuto JA, Lima DB, de Menezes R, Batista AHM, Nogueira P, Silveira ER, Grangeiro TB, Nogueira NAP, Martins AMC (2019) Antichagasic effect of violacein from Chromobacterium violaceum. J Appl Microbiol 127:1373–1380. https://doi.org/10.1111/jam.14391
doi: 10.1111/jam.14391
pubmed: 31339616
Cardozo VF, Oliveira AG, Nishio EK, Perugini MRE, Andrade CGTJ, Silveira WD, Durán N, Andrade G, Kobayashi RKT, Nakazato G (2013) Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 12:12. https://doi.org/10.1186/1476-0711-12-12
doi: 10.1186/1476-0711-12-12
pubmed: 23773484
pmcid: 3695862
Cauz ACG, Carretero GPB, Saraiva GKV, Park P, Mortara L, Cuccovia IM, Brocchi M, Gueiros-Filho FJ (2019) Violacein targets the cytoplasmic membrane of bacteria. ACS Infect Dis 5(4):539–549. https://doi.org/10.1021/acsinfecdis.8b00245
doi: 10.1021/acsinfecdis.8b00245
pubmed: 30693760
Cazotto LL, Martins D, Ribeiro MG, Durán N, Nakazato G (2011) Antibacterial activity of violacein against Staphylococcus aureus from bovine mastitis. J Antibiotics 64:395–397. https://doi.org/10.1038/ja.2011.13
doi: 10.1038/ja.2011.13
Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ (2015a) High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep 5:15598. https://doi.org/10.1038/srep15598
doi: 10.1038/srep15598
pubmed: 26489441
pmcid: 4614999
Choi SY, Yoon K-H, Lee JI, Mitchell RJ (2015b) Violacein: properties and production of a versatile bacterial pigment. BioMed Res Int 105:465056. https://doi.org/10.1155/2015/465056
doi: 10.1155/2015/465056
Choi SY, Im H, Mitchell RJ (2017) Violacein and bacterial predation: promising alternatives for priority multidrug resistant human pathogens. Future Microbiol 12:835–838. https://doi.org/10.2217/fmb-2017-0090
doi: 10.2217/fmb-2017-0090
pubmed: 28660782
Choi SY, Lim S, Cho G, Kwon J, Mun W, Im H, Mitchell RJ (2020) Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ Microbiol 20:705–713. https://doi.org/10.1111/1462-2920.14888
doi: 10.1111/1462-2920.14888
Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ (2021) Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J Biol Eng 15(1):10. https://doi.org/10.1186/s13036-021-00262-9
doi: 10.1186/s13036-021-00262-9
pubmed: 33706806
pmcid: 7948353
Chuang J, Boeke JD, Mitchell LA (2018) Coupling yeast golden gate and VEGAS for efficient assembly of the violacein pathway in Saccharomyces cerevisiae. In: Jensen MK, Keasling JD (eds) Synthetic metabolic pathways: methods and protocols, methods in molecular biology. Springer, Berlin, pp 211–295
doi: 10.1007/978-1-4939-7295-1_14
Corazzari M, Fimia GM, Lovat P, Piacentini M (2013) Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications. Semin Cancer Biol 23:337–343. https://doi.org/10.1016/j.semcancer.2013.07.001
doi: 10.1016/j.semcancer.2013.07.001
pubmed: 23856558
Conlon GA, Murray GI (2019) Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 24:629–640. https://doi.org/10.1002/path.5225
doi: 10.1002/path.5225
Cress BF, Erkert KA, Barquera B, Koffas MA (2013) Draft genome sequence of Pseudoalteromonas luteoviolacea strain B (ATCC 29581). Genome Announc 1:e0004813. https://doi.org/10.1128/genomeA.00048-13
doi: 10.1128/genomeA.00048-13
pubmed: 23516191
Dang HT, Yotsumoto K, Enomoto K (2014) Draft genome sequence of violacein-producing marine bacterium Pseudoalteromonas sp. 520P1. Genome Announc 2:e01346-e1414. https://doi.org/10.1128/genomeA.01346-14
doi: 10.1128/genomeA.01346-14
pubmed: 25540353
pmcid: 4276831
de Azevedo MBM, Alderete J, Rodriguez JA, Souza AO, Rettori D, Torsoni MA, Faljoni-Alário A, Haun M, Durán N (2000) Biological activities of violacein: a new antitumoral indole derivative in an inclusion complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem 37:93–101. https://doi.org/10.1023/A:1008138807481
doi: 10.1023/A:1008138807481
de Carvalho DD, Costa FT, Durán N, Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol in Vitro 20:1514–1521. https://doi.org/10.1016/j.tiv.2006.06.007
doi: 10.1016/j.tiv.2006.06.007
pubmed: 16889929
de Souza KD, Perez KR, Durán N, Justo GZ, Caseli L (2017) Interaction of violacein in models for cellular membranes: regulation of the interaction by the lipid composition at the air-water interface. Colloids Surf b: Biointerf 160:247–253. https://doi.org/10.1016/j.colsurfb.2017.09.027
doi: 10.1016/j.colsurfb.2017.09.027
DeMoss RD, Evans NR (1959) Physiological aspects of violacein biosynthesis in nonproliferating cells. J Bacteriol 78(4):583–588
doi: 10.1128/jb.78.4.583-588.1959
DeMoss RD, Evans NR (1960) Incorporation of C
doi: 10.1128/jb.79.5.729-733.1960
Devescovi G, Kojic M, Covaceuszach S, Cámara M, Williams P, Bertani I, Subramoni S, Venturi V (2017) Negative regulation of violacein biosynthesis in Chromobacterium violaceum. Front Microbiol 8:349. https://doi.org/10.3389/fmicb.2017.00349
doi: 10.3389/fmicb.2017.00349
pubmed: 28326068
pmcid: 5339254
Dodou HV, de Morais Batista AH, Sales GWP, de Medeiros SC, Rodrigues ML, Nogueira PCN, Silveira ER, Nogueira NAP (2017) Violacein antimicrobial activity on Staphylococcus epidermidis and synergistic effect on commercially available antibiotics. J Appl Microbiol 123:853–860. https://doi.org/10.1111/jam.13547
doi: 10.1111/jam.13547
pubmed: 28744944
Dodou HV, Batista AHM, Medeiros SC, Sales GWP, Rodrigues ML, Pereira PIO, Nogueira PCN, Silveira ER, Grangeiro TB, Nogueira NAP (2019) Violacein antimicrobial activity on Staphylococcus epidermidis biofilm. Nat Prod Res 13:1–4. https://doi.org/10.1080/14786419.2019.1569654
doi: 10.1080/14786419.2019.1569654
Doing G, Perron GG, Jude BA (2018) Draft genome sequence of a violacein-producing Iodobacter sp. from the Hudson Valley Watershed. Genome Announc 6:e01428-e1517. https://doi.org/10.1128/genomeA.01428-17
doi: 10.1128/genomeA.01428-17
pubmed: 29301892
pmcid: 5754501
Dong X, Song YN, Liu WG, Guo XL (2009) MMP-9, a potential target for cerebral ischemic treatment. Curr Neuropharmacol 7:269–275. https://doi.org/10.2174/157015909790031157
doi: 10.2174/157015909790031157
pubmed: 20514206
pmcid: 2811860
Durán N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D (2007) Violacein: properties and biological activities. Biotechnol Appl Biochem 48:127–133. https://doi.org/10.1042/BA20070115
doi: 10.1042/BA20070115
pubmed: 17927569
Durán M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Durán N (2012) Potential applications of violacein: a microbial pigment. Med Chem Res 21:1524–1532. https://doi.org/10.1007/s00044-011-9654-9
doi: 10.1007/s00044-011-9654-9
Durán N, Justo GZ, Durán M, Brocchi M, Cordi L, Tasic L, Castro GR, Nakazato G (2016) Advances in Chromobacterium violaceum and properties of violacein, its main secondary metabolite: a review. Biotechnol Adv 34:1030–1045. https://doi.org/10.1016/j.biotechadv.2016.06.003
doi: 10.1016/j.biotechadv.2016.06.003
pubmed: 27288924
Durán N, Fávaro WJ, Brocchi M, Justo GZ, Castro GR, Durán M, Nakazato G (2020) Patents on violacein: a compound with great diversity of biological activities and industrial potential. Recent Pat Biotechnol. https://doi.org/10.2174/2213476X07666201221111655
doi: 10.2174/2213476X07666201221111655
pubmed: 33349223
Fakhr FA, Khanafari A, Baserisalehi M, Yaghoobi RF, Shahghasempour S (2012) An investigation of antileukemia activity of violacein loaded dendrimer in Jurkat cell lines. Afr J Microbiol Res 6:6235–6242. https://doi.org/10.5897/AJMR11.741
doi: 10.5897/AJMR11.741
Fang M-Y, Zhang C, Yang S, Cui J-Y, Jiang P-X, Lou K, Wachi M, Xing X-H (2015) High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb Cell Fact 14:8. https://doi.org/10.1186/s12934-015-0192-x
doi: 10.1186/s12934-015-0192-x
pubmed: 25592762
pmcid: 4306242
Fang M, Wang T, Zhang C, Bai J, Zheng X, Zhao X, Lou K, Xing X-H (2016) Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng 33:41–51. https://doi.org/10.1016/j.ymben.2015.10.006
doi: 10.1016/j.ymben.2015.10.006
pubmed: 26506462
Farrar RR, Gundersen-Rindal DE, Kuhar D, Blackburn MB (2018) Insecticidal activity of Chromobacterium vaccinii. J Entomol Sci 53:339–346. https://doi.org/10.18474/JES17-108.1
doi: 10.18474/JES17-108.1
Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104:1459–1464. https://doi.org/10.1182/blood-2004-02-0594
doi: 10.1182/blood-2004-02-0594
pubmed: 15130948
Füller JJ, Röpke R, Krausze J, Rennhack KE, Daniel N, Blankenfeldt W, Schulz S, Jahn D, Moser J (2016) Biosynthesis of violacein: structure and function of L-tryptophan oxidase VioA from Chromobacterium violaceum. J Biol Chem 291:20068–20084. https://doi.org/10.1074/jbc.M116.741561
doi: 10.1074/jbc.M116.741561
pubmed: 27466367
pmcid: 5025692
Gao A, Chen H, Hou A, Xie K (2019) Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles. Mater Sci Eng C Mater Biol Appl 103:109821. https://doi.org/10.1016/j.msec.2019.109821
doi: 10.1016/j.msec.2019.109821
pubmed: 31349531
Gomez-Gomez B, Arregui L, Serrano S, Santos A, Perez-Corona T, Madrid Y (2019) Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics 11:1104–1114. https://doi.org/10.1039/C9MT00044E
doi: 10.1039/C9MT00044E
pubmed: 31021332
Gonçalves PR, Rocha-Brito KJP, Fernandes MRN, Abrantes JL, Durán N, Ferreira-Halder CV (2016) Violacein induces death of RAS-mutated metastatic melanoma by impairing autophagy process. Tumor Biol 37:14049–14058. https://doi.org/10.1007/s13277-016-5265-x
doi: 10.1007/s13277-016-5265-x
Gupta R, Mitra S, Chowdhury S, Das G, Priyadarshini R, Mukhopadhyay MK, Ghosh SK (2021) Discerning perturbed assembly of lipids in a model membrane in presence of violacein. Biochim Biophys Acta Biomembr 1863:183647. https://doi.org/10.1016/j.bbamem.2021.183647
doi: 10.1016/j.bbamem.2021.183647
pubmed: 33989532
Hakvåg S, Fjaervik E, Klinkenberg G, Borgos SE, Josefsen KD, Ellingsen TE, Zotchev SB (2009) Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trøndelag. Norway Mar Drugs 7:576–588. https://doi.org/10.3390/md7040576
doi: 10.3390/md7040576
pubmed: 20098599
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9
doi: 10.1016/s0092-8674(00)81683-9
pubmed: 10647931
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013
doi: 10.1016/j.cell.2011.02.013
pubmed: 21376230
Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824. https://doi.org/10.1038/ismej.2009.27
doi: 10.1038/ismej.2009.27
pubmed: 19322245
Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129. https://doi.org/10.1038/nrd4510
doi: 10.1038/nrd4510
pubmed: 25614221
Hashimi SM, Xu T, Wei MQ (2015) Violacein anticancer activity is enhanced under hypoxia. Oncol Rep 33:1731–1736. https://doi.org/10.3892/or.2015.3781
doi: 10.3892/or.2015.3781
pubmed: 25652759
Hidachi K, Mitsuishi S, Ueno M, Toda K, Yuki H, Takiguchi Y, Sasaki O, Tomiyama M, Kawakami R, Sakai A, Sakurai T, Yasukawa T, Abe J, Ogata H (2017) Tyrosinase activity inhibitor. Japan Patent 2017210451
Hoshino T (2011) Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol 91:1463–1475. https://doi.org/10.1007/s00253-011-3468-z
doi: 10.1007/s00253-011-3468-z
pubmed: 21779844
Im H, Choi SY, Son S, Mitchell RJ (2017) Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci Rep 7:14415. https://doi.org/10.1038/s41598-017-14567-7
doi: 10.1038/s41598-017-14567-7
pubmed: 29089523
pmcid: 5663959
Immanuel SRC, Banerjee D, Rajankar MP, Raghunathan A (2018) Integrated constraints based analysis of an engineered violacein pathway in Escherichia coli. Biosystems 171:10–19. https://doi.org/10.1186/s12918-017-0427-z
doi: 10.1186/s12918-017-0427-z
pubmed: 30008425
Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, Castro GR, Durán N (2017) Nanopharmaceuticals as a solution to neglected diseases: is it possible? Acta Trop 170:16–42. https://doi.org/10.1016/j.actatropica.2017.02.019
doi: 10.1016/j.actatropica.2017.02.019
pubmed: 28232069
Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MAG (2015) ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep 5:11301. https://doi.org/10.1038/srep11301
doi: 10.1038/srep11301
pubmed: 26062452
pmcid: 4650668
Jude BA (2019) Draft genome sequence of a Chitinimonas species from Hudson Valley waterways that expresses violacein pigment. Microbiol Resour Announc 8:e00683-e719. https://doi.org/10.1128/MRA.00683-19
doi: 10.1128/MRA.00683-19
pubmed: 31467098
pmcid: 6715868
Justo GZ, Durán N (2017) Action and function of Chromobacterium violaceum in health and disease: violacein as a promising metabolite to counteract gastroenterological disease. Best Pract Res Clin Gastroenterol 31:649–656. https://doi.org/10.1016/j.bpg.2017.10.002
doi: 10.1016/j.bpg.2017.10.002
pubmed: 29566908
Kallmayer V, Lanzendoerfer G, Meiring U, Mocigemba N, Reidel H, Schaefer J, Viala S (2005) Cosmetic preparation, useful e.g. for the protection of skin and (semi)mucous membrane against bacteria and/or virus, comprises violacein dye in combination with lipophilic and/or hydrophilic substances. Germany Patent DE102005051869 A1
Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, Topakas E (2018) Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front Microbiol 9:1495. https://doi.org/10.3389/fmicb.2018.01495
doi: 10.3389/fmicb.2018.01495
pubmed: 30042746
pmcid: 6048185
Kato K, Yasui T, Akira S, Tsukamoto T, Qin H, Atsushi K (1998) Bluish purple pigment produced by bacterium and its use as dye or coloring additive. Japan Patent 10113169
Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27:508–516. https://doi.org/10.1093/carcin/bgi307
doi: 10.1093/carcin/bgi307
pubmed: 16344270
Kothari V, Sharma S, Padia D (2017) Recent research advances on Chromobacterium violaceum. Asian Pac J Trop Med 10:744–752. https://doi.org/10.1016/j.apjtm.2017.07.022
doi: 10.1016/j.apjtm.2017.07.022
pubmed: 28942822
Kuzyk SB, Pritchard AO, Plouffe J, Sorensen JL, Yurkov V (2020) Psychrotrophic violacein-producing bacteria isolated from Lake Winnipeg, Canada. J Great Lakes Res. https://doi.org/10.1016/j.jglr.2020.04.008
doi: 10.1016/j.jglr.2020.04.008
Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. https://doi.org/10.3389/fneur.2013.00032
doi: 10.3389/fneur.2013.00032
pubmed: 23565108
pmcid: 3615191
Lamendella R, Jude BA (2018) Draft genome sequences of violacein-producing Duganella sp. isolates from a waterway in eastern Pennsylvania. Microbiol Resour Announc 7:e01196-e1218. https://doi.org/10.1128/MRA.01196-18
doi: 10.1128/MRA.01196-18
pubmed: 30533678
pmcid: 6256701
Leal AMS, de Queiroz JDF, de Medeiros SRB, Lima TKS, Agnez-Lima LF (2015) Violacein induces cell death by triggering mitochondrial membrane hyperpolarization in vitro. BMC Microbiol 15:115. https://doi.org/10.1186/s12866-015-0452-2
doi: 10.1186/s12866-015-0452-2
pubmed: 26048053
pmcid: 4457087
Lee JK, Kwak HJ, Piao MS, Jang JW, Kim SH, Kim HS (2010) Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats. Acta Neurochir (wien) 153:1321–1329. https://doi.org/10.1007/s00701-010-0889-x
doi: 10.1007/s00701-010-0889-x
Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE (2013) Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res 41:10668–10678. https://doi.org/10.1093/nar/gkt809
doi: 10.1093/nar/gkt809
pubmed: 24038353
pmcid: 3905865
Lee YJ, Bashyal P, Pandey RP, Sohng JK (2019) Enzymatic and microbial biosynthesis of novel violacein glycosides with enhanced water solubility and improved anti-nematode activity. Biotechnol Bioproc Eng 24(2):366–374. https://doi.org/10.1007/s12257-018-0466-3
doi: 10.1007/s12257-018-0466-3
Leon LL, Miranda CC, De Souza AO, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48:449–450. https://doi.org/10.1093/jac/48.3.449
doi: 10.1093/jac/48.3.449
pubmed: 11533018
Linger RM, Cohen RA, Cummings CT, Sather S, Migdall-Wilson J, Middleton DH, Lu X, Barón AE, Franklin WA, Merrick DT, Jedlicka P, DeRyckere D, Heasley LE, Graham DK (2013) Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 32:3420–3431. https://doi.org/10.1038/onc.2012.355
doi: 10.1038/onc.2012.355
pubmed: 22890323
Liu L, Lu J, Wang Y, Pang XY, Xu M, Zhang SW, Lu JP (2017) Antitumor effect of violacein against HT29 by comparative proteomics. Sci Agric Sinica 50:1604–1704. https://doi.org/10.3864/j.issn.0578-1752.2017.09.015
doi: 10.3864/j.issn.0578-1752.2017.09.015
Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Durán N, Costa FTM (2009) Violacein extracted from Chromobacterium violaceum inhibits plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother 53:2149–2152. https://doi.org/10.1128/AAC.00693-08
doi: 10.1128/AAC.00693-08
pubmed: 19273690
pmcid: 2681540
Lozano GL, Guan C, Cao Y, Borlee BR, Broderick NA, Stabb EV, Handelsman J (2020) A chemical counterpunch: Chromobacterium violaceum ATCC 31532 produces violacein in response to translation-inhibiting antibiotics. Mbio 11(3):e00948-e01020. https://doi.org/10.1128/mBio.00948-20
doi: 10.1128/mBio.00948-20
pubmed: 32430474
pmcid: 7240160
Martin PA, Soby S (2016) Insecticidal strains of Chromobacterium vaccinii sp. nov. for control of insects. US Patent 9,339,039 B1
Martin PA, Gundersen-Rindal D, Blackburn M, Buyer J (2007) Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 57:993–999. https://doi.org/10.1099/ijs.0.64611-0
doi: 10.1099/ijs.0.64611-0
pubmed: 17473247
Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, Di Stefano E, Mattei M, Silvestri R, Schippa S, Manzari V, Modesti A, Bei R (2016) Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour Biol 37(3):3705–3717. https://doi.org/10.1007/s13277-015-4207-3
doi: 10.1007/s13277-015-4207-3
pubmed: 26462840
Matz C, Deines P, Boeings J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599. https://doi.org/10.1128/aem.70.3.1593-1599.2004
doi: 10.1128/aem.70.3.1593-1599.2004
pubmed: 15006783
pmcid: 368400
Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, Peter Steinberg P, Kjelleberg S (2008) Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 3:e2744. https://doi.org/10.1371/journal.pone.0002744
doi: 10.1371/journal.pone.0002744
pubmed: 18648491
pmcid: 2444038
Melo PS, Justo GZ, de Azevedo MB, Durán N, Haun M (2003) Violacein and its beta-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186:217–225. https://doi.org/10.1016/s0300-483x(02)00751-5
doi: 10.1016/s0300-483x(02)00751-5
pubmed: 12628314
Mojib N, Nasti TH, Andersen DT, Attigada VR, Hoover RB, Yusuf N, Bej AK (2011) The antiproliferative function of violacein-like purple violet pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma. Int J Dermatol 5:1223–1233. https://doi.org/10.1111/j.1365-4632.2010.04825.x
doi: 10.1111/j.1365-4632.2010.04825.x
Myeong NR, Seong HJ, Kim HJ, Sul WJ (2016) Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4–1. J Biotechnol 223:36–37. https://doi.org/10.1016/j.jbiotec.2016.02.027
doi: 10.1016/j.jbiotec.2016.02.027
pubmed: 26916415
Nakazato G, Gonçalves MC, das Neves MS, Kobayashi RKT, Brocchi M, Durán N (2019) Violacein@Biogenic Ag system: synergistic antibacterial activity against Staphylococcus aureus. Biotechnol Lett 41:1433–1437. https://doi.org/10.1007/s10529-019-02745-8
doi: 10.1007/s10529-019-02745-8
pubmed: 31650420
Nathwani D, Eckmann C, Lawson W, Solem CT, Corman S, Stephens JM, Macahilig C, Simoneau D, Chambers R, Li JZ, Haider S (2014) Influence of real-world characteristics on outcomes for patients with methicillin-resistant Staphylococcal skin and soft tissue infections: a multi-country medical chart review in Europe. BMC Infect Dis 14:476. https://doi.org/10.1186/1471-2334-14-476
doi: 10.1186/1471-2334-14-476
pubmed: 25182029
pmcid: 4164818
Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
doi: 10.1021/acs.jnatprod.5b01055
pubmed: 26852623
Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
doi: 10.1021/acs.jnatprod.9b01285
pubmed: 32162523
pmcid: 32162523
Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234. https://doi.org/10.1039/a902202c
doi: 10.1039/a902202c
pubmed: 10888010
Numan M, Bashir S, Mumtaz R, Tayyab S, Rehman NU, Khan AL, Shinwari ZK, Al-Harrasi A (2018) Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech 8:207. https://doi.org/10.1007/s13205-018-1227-x
doi: 10.1007/s13205-018-1227-x
pubmed: 29623249
pmcid: 5884752
Pandey AK, Verma S, Bhattacharya P, Paul S, Mishra A, Patnaik R (2012) An in-silico strategy to explore neuroprotection by quercetin in cerebral ischemia: a novel hypothesis based on inhibition of matrix metalloproteinase (MMPs) and acid sensing ion channel 1a (ASIC1a). Med Hypotheses 79:76–81. https://doi.org/10.1016/j.mehy.2012.04.005
doi: 10.1016/j.mehy.2012.04.005
pubmed: 22543073
Pandey AK, Bhattacharya P, Shukla SC, Paul S, Patnaik R (2015) Resveratrol inhibits matrix metalloproteinases to attenuate neuronal damage in cerebral ischemia: a molecular docking study exploring possible neuroprotection. Neural Regen Res 10:568–575. https://doi.org/10.4103/1673-5374.155429
doi: 10.4103/1673-5374.155429
pubmed: 26170816
pmcid: 4424748
Park HA, Park SA, Yang Y-H, Choi K-Y (2021) Microbial synthesis of violacein pigment and its potential applications. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2021.1892579
doi: 10.1080/07388551.2021.1892579
pubmed: 33730942
Pauer H, Hardoim CCP, Teixeira FL, Miranda KR, Barbirato DS, Pires de Carvalho DP, Antunes LCM, Leitão AAC, Lobo LA, Domingues RMCP (2018) Impact of violacein from Chromobacterium violaceum on the mammalian gut microbiome. PLoS ONE 13:e0203748. https://doi.org/10.1371/journal.pone.0203748
doi: 10.1371/journal.pone.0203748
pubmed: 30212521
pmcid: 6136722
Platt D, Amara S, Mehta T, Vercuyssee K, Myles EL, Johnson T, Tiriveedhi V (2014) Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem Biophys Res Commun 455:107–112. https://doi.org/10.1016/j.bbrc.2014.10.124
doi: 10.1016/j.bbrc.2014.10.124
pubmed: 25450700
pmcid: 4293260
Priya D, Kannan SRS, Thanga MK (2018) Production of violacein pigment from Chromobacterium violaceum and its antibacterial activity and synergism on E. coli isolated from UTI samples. Int J Recent Sci Res 9:24479–24484. https://doi.org/10.24327/ijrsr.2018.0902.1669
doi: 10.24327/ijrsr.2018.0902.1669
Puranik S, Talkal R, Qureshi A, Khardenavis A, Kapley A, Purohit HJ (2013) Sequence of the pigment-producing bacterium Pseudogulbenkiania ferrooxidans, isolated from Loktak Lake. Genome Announc 1:e01115-e1213. https://doi.org/10.1128/genomeA.01115-13
doi: 10.1128/genomeA.01115-13
pubmed: 24371207
pmcid: 3873617
Queiroz KC, Milani R, Ruela-de-Sousa RR, Fuhler GM, Justo GZ, Zambuzzi WF, Duran N, Diks SH, Spek CA, Ferreira CV, Peppelenbosch MP (2012) Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and Golgi apparatus collapse. PLoS ONE 7:e45362. https://doi.org/10.1371/journal.pone.0045362
doi: 10.1371/journal.pone.0045362
pubmed: 23071514
pmcid: 3469566
Rahul S, Chandrashekhar P, Hemant B, Bipinchandra S, Mouray E, Grellier P, Patil S (2015) In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol Int 64:353–356. https://doi.org/10.1016/j.parint.2015.05.004
doi: 10.1016/j.parint.2015.05.004
pubmed: 25986963
Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, Tripathi A, Mlambo G, Dimopoulos G (2014) Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Patholog 10:e1004398. https://doi.org/10.1371/journal.ppat.1004398
doi: 10.1371/journal.ppat.1004398
Ran T, Gao M, Wei Q, He J, Tang L, Wang W, Xu D (2015) Expression, crystallization and preliminary crystallographic data analysis of VioD, a hydroxylase in the violacein-biosynthesis pathway. Acta Crystal Sect F Struct Biol Commun 71:149–152. https://doi.org/10.1107/s2053230x14027617
doi: 10.1107/s2053230x14027617
Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030. https://doi.org/10.1161/01.str.29.5.1020
doi: 10.1161/01.str.29.5.1020
pubmed: 9596253
Rongzhen X, Yuwen W (2017) Use of natural pigment as nail polish pigment enabling to develop a healthy and environmentally friendly nail polish pigment. Taiwan Patent TW I570191
Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787. https://doi.org/10.1016/j.cell.2008.05.009
doi: 10.1016/j.cell.2008.05.009
pubmed: 18510923
pmcid: 18510923
Santos AB, Costa PS, do Carmo AO, da Rocha Fernandes G, Scholte LLS, Ruiz J, Kalapothakis E, Chartone-Souza E, Nascimento AMA (2018) Insights into the genome sequence of Chromobacterium amazonense isolated from a tropical freshwater lake. Int J Genomics. https://doi.org/10.1155/2018/1062716
doi: 10.1155/2018/1062716
pubmed: 29888247
pmcid: 5985088
Sarkar J, Nandy SK, Chowdhury A, Chakrabor T, Chakrabor S (2016) Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis. Biomed Pharmacother 84:340–347. https://doi.org/10.1016/j.biopha.2016.09.049
doi: 10.1016/j.biopha.2016.09.049
pubmed: 27668533
Sarmiento JJP, Cardozo VF, Durán N, Brocchi M, Kobayashi RKT, Nakazato G (2016) Composição contendo nanopartículas de prata biológica e um pigmento produzido por Chromobacterium violaceum com atividade antibacteriana. Brazilian Patent PIBR-10 003373 0
Sasidharan A, Sasidharan NK, Amma DBNS, Vasu RK, Nataraja AV, Bhaskaran K (2015) Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). J Microbiol 53:694–701. https://doi.org/10.1007/s12275-015-5173-6
doi: 10.1007/s12275-015-5173-6
pubmed: 26428920
Satoshi A, Takatoshi N (1998) Production of natural antimicrobial antioxidant and its cosmetic formulation. Japan Patent 10139612
Savage VJ, Chopra I, O’Neill AJ (2013) Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 57:1968–1970. https://doi.org/10.1128/AAC.02008-12
doi: 10.1128/AAC.02008-12
pubmed: 23357771
pmcid: 3623343
Schaeffer N, Kholany M, Veloso TLM, Pereira JL, Ventura SPM, Nicaud JM, Coutinho JAP (2019) Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chem Commun (camb) 55(59):8643–8646. https://doi.org/10.1039/c9cc03831k
doi: 10.1039/c9cc03831k
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE, Kosch TA, La Marca E, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA, Mendelson J 3rd, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel MO, Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR, Canessa S (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459–1463. https://doi.org/10.1126/science.aav0379
doi: 10.1126/science.aav0379
pubmed: 30923224
Schreiber SL, Nicolaou KC, Davies K (2002) Diversity-oriented organic synthesis and proteomics. New frontiers for chemistry & biology. Chem Biol 9:1–2. https://doi.org/10.1016/s1074-5521(02)00088-1
doi: 10.1016/s1074-5521(02)00088-1
pubmed: 11841933
Smith HJ, Foreman CM, Akiyama T, Franklin MJ, Devitt NP, Ramaraj T (2016) Genome sequence of Janthinobacterium sp. CG23_2, a violacein-producing isolate from an Antarctic supraglacial stream. Genome Announc 4:e01468-e1515. https://doi.org/10.1128/genomeA.01468-15
doi: 10.1128/genomeA.01468-15
pubmed: 26823573
pmcid: 4732326
Subramaniam S, Ravi V, Sivasubramanian A (2014) Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. Pharm Biol 52:86–90. https://doi.org/10.3109/13880209.2013.815634
doi: 10.3109/13880209.2013.815634
pubmed: 24073823
Tapia MAD, Herrera JRO, Quiroga CJI (2012) Strain of Cobetia marina and biosurfactant extract obtained from same. European Patent EP2716749
Thøgersen MS, Delpin MW, Melchiorsen J, Kilstrup M, Månsson M, Bunk B, Sproer C, Overmann J, Nielsen KF, Gram L (2016) Production of the Bioactive compounds violacein and indolmycin is conditional in a maeA mutant of Pseudoalteromonas luteoviolacea S4054 lacking the malic enzyme. Front Microbiol 7:1461. https://doi.org/10.3389/fmicb.2016.01461
doi: 10.3389/fmicb.2016.01461
pubmed: 27695447
pmcid: 5025454
Thomé R, Moraes AS, Bombeiro AL, Farias A, Francelin C, da Costa TA, Di Gangi R, Santos LMB, de Oliveira ALR, Verinaud L (2013) Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis. PLoS ONE 8:e65913. https://doi.org/10.1371/journal.pone.0065913
doi: 10.1371/journal.pone.0065913
pubmed: 23799062
pmcid: 3683039
Thomé R, Issayama LK, DiGangi R, Bombeiro AL, da Costa TA, Ferreira IT, de Oliveira ALR, Machado DRS, Verinaud L (2014) Dendritic cells treated with chloroquine modulate experimental autoimmune encephalomyelitis. Immunol Cell Biol 92:124–132. https://doi.org/10.1038/icb.2013.73
doi: 10.1038/icb.2013.73
pubmed: 24217811
Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296. https://doi.org/10.1084/jem.188.2.287
doi: 10.1084/jem.188.2.287
pubmed: 9670041
pmcid: 2212461
Tobie WC (1935) The pigment of Bacillus violaceus. I. The production, extraction, and purification of violacein. J Bacteriol 29(3):223–227
doi: 10.1128/jb.29.3.223-227.1935
Tong Y, Zhou J, Zhang L, Xu P (2021) A golden-gate based cloning toolkit to build violacein pathway libraries in Yarrowia lipolytica. ACS Synth Biol 10(1):115–124. https://doi.org/10.1021/acssynbio.0c00469
doi: 10.1021/acssynbio.0c00469
pubmed: 33399465
pmcid: 7812646
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res 6:750. https://doi.org/10.12688/f1000research.11120.1
doi: 10.12688/f1000research.11120.1
pubmed: 28649370
pmcid: 5464238
Valdes N, Soto P, Cottet L, Alarcon P, Gonzalez A, Castillo A, Corsini G, Tello M (2015) Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. Stand Genomic Sci 10:110. https://doi.org/10.1186/s40793-015-0104-z
doi: 10.1186/s40793-015-0104-z
pubmed: 26605004
pmcid: 4657372
Venegas FA, Kollisch G, Mark K, Diederich WE, Kaufmann A, Bauer S, Max Chavarría M, Juan J, Araya JJ, Alfonso J, García-Piñeres AJ (2019) The bacterial product violacein exerts an immunostimulatory effect via TLR8. Sci Rep 9:13661. https://doi.org/10.1038/s41598-019-50038-x
doi: 10.1038/s41598-019-50038-x
pubmed: 31541142
pmcid: 6754391
Venil CK, Aruldass CA, Halim MHA, Khasim AR, Zakaria ZA, Ahmad WA (2015) Spray drying of violet pigment from Chromobacterium violaceum UTM 5 and its application in food model systems. Int Biodeterior Biodegrad 102:324–329. https://doi.org/10.1016/j.ibiod.2015.02.006
doi: 10.1016/j.ibiod.2015.02.006
Verma S, Pandey AK (2017) An in-silico approach to explore the possible multifunctional neuroprotective efficacy of violacein against ischemic stroke. J Pharmacol 3:17. https://doi.org/10.21767/2469-6692.100017
doi: 10.21767/2469-6692.100017
Verma A, Warner SL, Vankayalapati H, Bearss DJ, Sharma S (2011) Targeting Axl and Mer kinases in cancer. Mol Cancer Ther 10:1763–1773. https://doi.org/10.1158/1535-7163.MCT-11-0116
doi: 10.1158/1535-7163.MCT-11-0116
pubmed: 21933973
Verinaud L, Lopes SCP, Prado ICN, Zanucoli F, da Costa TA, Di Gangi R, Issayama LK, Carvalho AC, Bonfanti AP, Niederauer GF, Durán N, Costa FTM, de Oliveira ALR, Thomé R (2015) Violacein treatment modulates acute and chronic inflammation through the suppression of cytokine production and induction of regulatory T cells. PLoS ONE 10:e0125409. https://doi.org/10.1371/journal.pone.0125409
doi: 10.1371/journal.pone.0125409
pubmed: 25938431
pmcid: 4418714
Vöing K, Harrison A, Soby SD (2015) Draft genome sequence of Chromobacterium vaccinii, a potential biocontrol agent against mosquito (Aedes aegypti) larvae. Genome Announc 3:e00477–e00515. https://doi.org/10.1128/genomeA.00477-15
doi: 10.1128/genomeA.00477-15
pubmed: 25999572
pmcid: 4440952
Vöing K, Harrison A, Soby SD (2017) Draft genome sequence of Chromobacterium subtsugae MWU12-2387 isolated from a Wild Cranberry Bog in Truro, Massachusetts. Genome Announc 5:e01633-e1716. https://doi.org/10.1128/genomeA.01633-16
doi: 10.1128/genomeA.01633-16
pubmed: 28336605
pmcid: 5364230
Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD, Rabemananjara F, Gratwicke B, Vences M, Minbiole KPC (2018) Prodigiosin, violacein, and volatile organic compounds Produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb Ecol 75:1049–1062. https://doi.org/10.1007/s00248-017-1095-7
doi: 10.1007/s00248-017-1095-7
pubmed: 29119317
World Health Organization (2017) World malaria report 2017. pp 197. https://www.who.int/malaria/publications/world-malaria-report-2017/en/ . Accessed 28 Sept 2020
Wu YH, Cheng H, Xu L, Jin XB, Wang CS, Xu XW (2017) Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater. PLoS ONE 12(6):e0179997. https://doi.org/10.1371/journal.pone.0179997
doi: 10.1371/journal.pone.0179997
pubmed: 28640915
pmcid: 5481030
Xu X, Tian L, Zhang S, Jiang L, Zhang Z, Huang H (2019) Complete genome sequence of Janthinobacterium sp. B9–8, a violacein-producing bacterium isolated from low-temperature sewage. Microb Pathog 128:178–183. https://doi.org/10.1016/j.micpath.2019.01.003
doi: 10.1016/j.micpath.2019.01.003
pubmed: 30610900
Yoon KH, Lee TY, Moon JH, Choi SY, Choi YJ, Mitchell RJ, Il Lee J (2020) Consumption of oleic acid during matriphagy in free-living nematodes alleviates the toxic effects of the bacterial metabolite violacein. Sci Rep 10(1):8087. https://doi.org/10.1038/s41598-020-64953-x
doi: 10.1038/s41598-020-64953-x
pubmed: 32415196
pmcid: 7229185
Zhou Y, Fang MY, Li G, Zhang C, Xing XH (2018) Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(s) involved in violacein biosynthesis. Appl Biochem Biotechnol 186:909–916. https://doi.org/10.1007/s12010-018-2787-2
doi: 10.1007/s12010-018-2787-2
pubmed: 29797295