The role of oral bacteria in inflammatory bowel disease.


Journal

Nature reviews. Gastroenterology & hepatology
ISSN: 1759-5053
Titre abrégé: Nat Rev Gastroenterol Hepatol
Pays: England
ID NLM: 101500079

Informations de publication

Date de publication:
10 2021
Historique:
accepted: 23 06 2021
pubmed: 18 8 2021
medline: 23 11 2021
entrez: 17 8 2021
Statut: ppublish

Résumé

Over the past two decades, the importance of the microbiota in health and disease has become evident. Pathological changes to the oral bacterial microbiota, such as those occurring during periodontal disease, are associated with multiple inflammatory conditions, including inflammatory bowel disease. However, the degree to which this association is a consequence of elevated oral inflammation or because oral bacteria can directly drive inflammation at distal sites remains under debate. In this Perspective, we propose that in inflammatory bowel disease, oral disease-associated bacteria translocate to the intestine and directly exacerbate disease. We propose a multistage model that involves pathological changes to the microbial and immune compartments of both the oral cavity and intestine. The evidence to support this hypothesis is critically evaluated and the relevance to other diseases in which oral bacteria have been implicated (including colorectal cancer and liver disease) are discussed.

Identifiants

pubmed: 34400822
doi: 10.1038/s41575-021-00488-4
pii: 10.1038/s41575-021-00488-4
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

731-742

Subventions

Organisme : Medical Research Council
ID : MR/J011118/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R024812/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P012175/2
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 215027/Z/18/Z
Pays : United Kingdom

Informations de copyright

© 2021. Springer Nature Limited.

Références

Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 1–12 (2017).
doi: 10.1186/s12915-017-0454-7
Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).
pubmed: 22945443 doi: 10.1038/nrgastro.2012.156
Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).
pubmed: 28743984 pmcid: 5880536 doi: 10.1038/nrgastro.2017.88
Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16, 745–759 (2018).
pubmed: 30301974 pmcid: 6278837 doi: 10.1038/s41579-018-0089-x
Tilg, H., Cani, P. D. & Mayer, E. A. Gut microbiome and liver diseases. Gut 65, 2035–2044 (2016).
pubmed: 27802157 doi: 10.1136/gutjnl-2016-312729
Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).
doi: 10.1038/s41575-019-0209-8 pubmed: 31554963
Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2018).
doi: 10.1016/S0140-6736(17)32448-0
de Souza, H. S. P. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).
pubmed: 26627550 doi: 10.1038/nrgastro.2015.186
Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).
pubmed: 25534621 pmcid: 4276050 doi: 10.1038/nri3785
Chavakis, T., Mitroulis, I. & Hajishengallis, G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20, 802–811 (2019).
pubmed: 31213716 pmcid: 6709414 doi: 10.1038/s41590-019-0402-5
Mark Welch, J. L., Dewhirst, F. E. & Borisy, G. G. Biogeography of the oral microbiome: the site-specialist hypothesis. Annu. Rev. Microbiol. 73, 335–358 (2019).
pubmed: 31180804 pmcid: 7153577 doi: 10.1146/annurev-micro-090817-062503
Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).
pubmed: 26499895 doi: 10.1038/nrmicro3552
Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).
pubmed: 28953883 pmcid: 5831082 doi: 10.1038/nature23889
Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337–346 (2018).
pubmed: 29311644 pmcid: 6131705 doi: 10.1038/s41564-017-0089-z
Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).
pubmed: 28191884 pmcid: 5319707 doi: 10.1038/nmicrobiol.2017.4
Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).
pubmed: 29143816 doi: 10.1038/nature24460
Andoh, A. et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J. Gastroenterol. 46, 479–486 (2011).
pubmed: 21253779 doi: 10.1007/s00535-010-0368-4
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
pubmed: 24629344 pmcid: 4059512 doi: 10.1016/j.chom.2014.02.005
Ohkusa, T. et al. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J. Gastroenterol. Hepatol. 17, 849–53 (2002).
pubmed: 12164960 doi: 10.1046/j.1440-1746.2002.02834.x
Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).
pubmed: 26843508 doi: 10.1136/gutjnl-2015-310746
Peters, B. A., Wu, J., Hayes, R. B. & Ahn, J. The oral fungal mycobiome: characteristics and relation to periodontitis in a pilot study. BMC Microbiol. 17, 157 (2017).
pubmed: 28701186 pmcid: 5508751 doi: 10.1186/s12866-017-1064-9
She, Y. Y. et al. Periodontitis and inflammatory bowel disease: a meta-analysis. BMC Oral. Health 20, 67 (2020).
pubmed: 32164696 pmcid: 7069057 doi: 10.1186/s12903-020-1053-5
Singhal, S. et al. The role of oral hygiene in inflammatory bowel disease. Dig. Dis. Sci. 56, 170–175 (2011).
pubmed: 20458622 doi: 10.1007/s10620-010-1263-9
Vavricka, S. R. et al. Periodontitis and gingivitis in inflammatory bowel disease: a case-control study. Inflamm. Bowel Dis. 19, 2768–2777 (2013).
pubmed: 24216685 doi: 10.1097/01.MIB.0000438356.84263.3b
Habashneh, R. A., Khader, Y. S., Alhumouz, M. K., Jadallah, K. & Ajlouni, Y. The association between inflammatory bowel disease and periodontitis among Jordanians: a case-control study. J. Periodontal. Res. 47, 293–298 (2012).
pubmed: 22050539 doi: 10.1111/j.1600-0765.2011.01431.x
Koutsochristou, V. et al. Dental caries and periodontal disease in children and adolescents with inflammatory bowel disease: a case-control study. Inflamm. Bowel Dis. 21, 1839–1846 (2015).
pubmed: 25985243 doi: 10.1097/MIB.0000000000000452
Xu, X. et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol. 17, 699–710 (2015).
pubmed: 24800728 doi: 10.1111/1462-2920.12502
Caselli, E. et al. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol. 20, 120 (2020).
pubmed: 32423437 pmcid: 7236360 doi: 10.1186/s12866-020-01801-y
Schmidt, T. S. et al. Extensive transmission of microbes along the gastrointestinal tract. eLife 8, e42693 (2019).
pubmed: 30747106 pmcid: 6424576 doi: 10.7554/eLife.42693
Wilbert, S. A., Mark Welch, J. L. & Borisy, G. G. Spatial ecology of the human tongue dorsum microbiome. Cell Rep. 30, 4003–4015.e3 (2020).
pubmed: 32209464 pmcid: 7179516 doi: 10.1016/j.celrep.2020.02.097
Welch, J. L. M., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA 113, E791–E800 (2016).
Curtis, M. A., Diaz, P. I. & Van Dyke, T. E. The role of the microbiota in periodontal disease. Periodontology 2000 83, 14–25 (2020).
pubmed: 32385883 doi: 10.1111/prd.12296
Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
pubmed: 27541692 pmcid: 4991899 doi: 10.1371/journal.pbio.1002533
Humphrey, S. P. & Williamson, R. T. A review of saliva: normal composition, flow, and function. J. Prosthet. Dent. 85, 162–169 (2001).
pubmed: 11208206 doi: 10.1067/mpr.2001.113778
van den Bogert, B. et al. Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol. Ecol. 85, 376–388 (2013).
pubmed: 23614882 doi: 10.1111/1574-6941.12127
Kirk, K. F. et al. Molecular epidemiology and comparative genomics of Campylobacter concisus strains from saliva, faeces and gut mucosal biopsies in inflammatory bowel disease. Sci. Rep. 8, 1902 (2018).
pubmed: 29382867 pmcid: 5790007 doi: 10.1038/s41598-018-20135-4
Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17, 1971–1978 (2011).
pubmed: 21830275 doi: 10.1002/ibd.21606
Giannella, R. A., Broitman, S. A. & Zamcheck, N. Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13, 251–256 (1972).
pubmed: 4556018 pmcid: 1412163 doi: 10.1136/gut.13.4.251
Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).
pubmed: 23240815 doi: 10.1111/j.1365-2567.2012.03616.x
Sequeira, R. P., McDonald, J. A. K., Marchesi, J. R. & Clarke, T. B. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat. Microbiol. 5, 304–313 (2020).
pubmed: 31907407 pmcid: 7610889 doi: 10.1038/s41564-019-0640-1
Li, B. et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int. J. Oral. Sci. 11, 10 (2019).
pubmed: 30833566 pmcid: 6399334 doi: 10.1038/s41368-018-0043-9
Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, R42 (2012).
pubmed: 22698087 pmcid: 3446314 doi: 10.1186/gb-2012-13-6-r42
Eren, A. M., Borisy, G. G., Huse, S. M. & Mark Welch, J. L. Oligotyping analysis of the human oral microbiome. Proc. Natl Acad. Sci. USA 111, E2875–2884 (2014).
pubmed: 24965363 pmcid: 4104879 doi: 10.1073/pnas.1409644111
Tierney, B. T. et al. The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26, 283–295.e8 (2019).
pubmed: 31415755 pmcid: 6716383 doi: 10.1016/j.chom.2019.07.008
Carr, V. R. et al. Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat. Commun. 11, 693 (2020).
pubmed: 32019923 pmcid: 7000725 doi: 10.1038/s41467-020-14422-w
Man, S. M. et al. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. Inflamm. Bowel Dis. 16, 1008–1016 (2010).
pubmed: 19885905 doi: 10.1002/ibd.21157
Kirk, K. F., Nielsen, H. L., Thorlacius-Ussing, O. & Nielsen, H. Optimized cultivation of Campylobacter concisus from gut mucosal biopsies in inflammatory bowel disease. Gut Pathog. 8, 27 (2016).
pubmed: 27252786 pmcid: 4888738 doi: 10.1186/s13099-016-0111-7
Schirmer, M. et al. Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course. Cell Host Microbe 24, 600–610.e4 (2018).
pubmed: 30308161 pmcid: 6277984 doi: 10.1016/j.chom.2018.09.009
Dinakaran, V. et al. Identification of specific oral and gut pathogens in full thickness colon of colitis patients: implications for colon motility. Front. Microbiol. 10, 3220 (2019).
doi: 10.3389/fmicb.2018.03220
Pascal, V. et al. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).
pubmed: 28179361 doi: 10.1136/gutjnl-2016-313235
Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives T
pubmed: 29051379 pmcid: 5682622 doi: 10.1126/science.aan4526
Baker, J. L. et al. Klebsiella and Providencia emerge as lone survivors following long-term starvation of oral microbiota. Proc. Natl Acad. Sci. USA 116, 8499–8504 (2019).
pubmed: 30975748 pmcid: 6486781 doi: 10.1073/pnas.1820594116
Sayad, A. et al. Genetic susceptibility for periodontitis with special focus on immune-related genes: a concise review. Gene Rep. 21, 100814 (2020).
doi: 10.1016/j.genrep.2020.100814
Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020).
pubmed: 32103191 pmcid: 7871366 doi: 10.1038/s41586-020-2025-2
Xun, Z., Zhang, Q., Xu, T., Chen, N. & Chen, F. Dysbiosis and ecotypes of the salivary microbiome associated with inflammatory bowel diseases and the assistance in diagnosis of diseases using oral bacterial profiles. Front. Microbiol. 9, 1136 (2018).
pubmed: 29899737 pmcid: 5988890 doi: 10.3389/fmicb.2018.01136
Said, H. S. et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 21, 15–25 (2015).
doi: 10.1093/dnares/dst037
Szafrański, S. P. et al. Functional biomarkers for chronic periodontitis and insights into the roles of Prevotella nigrescens and Fusobacterium nucleatum; a metatranscriptome analysis. NPJ Biofilms Microbiomes 1, 15017 (2015).
pubmed: 28721234 pmcid: 5515211 doi: 10.1038/npjbiofilms.2015.17
Kumar, P. S., Griffen, A. L., Moeschberger, M. L. & Leys, E. J. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J. Clin. Microbiol. 43, 3944–3955 (2005).
pubmed: 16081935 pmcid: 1233920 doi: 10.1128/JCM.43.8.3944-3955.2005
Kelsen, J. et al. Alterations of the subgingival microbiota in pediatric Crohn’s disease studied longitudinally in discovery and validation cohorts. Inflamm. Bowel Dis. 21, 2797–2805 (2015).
pubmed: 26288001 doi: 10.1097/MIB.0000000000000557
Moutsopoulos, N. M. & Konkel, J. E. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol. 39, 276–287 (2018).
pubmed: 28923364 doi: 10.1016/j.it.2017.08.005
Dutzan, N., Konkel, J. E., Greenwell-Wild, T. & Moutsopoulos, N. M. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 9, 1163–1172 (2016).
pubmed: 26732676 pmcid: 4820049 doi: 10.1038/mi.2015.136
Pan, W., Wang, Q. & Chen, Q. The cytokine network involved in the host immune response to periodontitis. Int. J. Oral. Sci. 11, 30 (2019).
pubmed: 31685798 pmcid: 6828663 doi: 10.1038/s41368-019-0064-z
Herrero, E. R. et al. Dysbiotic biofilms deregulate the periodontal inflammatory response. J. Dent. Res. 97, 547–555 (2018).
pubmed: 29394879 doi: 10.1177/0022034517752675
Hajishengallis, G., Shakhatreh, M.-A. K., Wang, M. & Liang, S. Complement receptor 3 blockade promotes IL-12-mediated clearance of porphyromonas gingivalis and negates its virulence in vivo. J. Immunol. 179, 2359–2367 (2007).
pubmed: 17675497 doi: 10.4049/jimmunol.179.4.2359
Dutzan, N. et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl. Med. 10, eaat0797 (2018).
pubmed: 30333238 pmcid: 6330016 doi: 10.1126/scitranslmed.aat0797
Suárez, L. J., Vargas, D. E., Rodríguez, A., Arce, R. M. & Roa, N. S. Systemic Th17 response in the presence of periodontal inflammation. J. Appl. Oral. Sci. 28, e20190490 (2020).
pubmed: 32267379 pmcid: 7135952 doi: 10.1590/1678-7757-2019-0490
Aleksandra Nielsen, A., Nederby Nielsen, J., Schmedes, A., Brandslund, I. & Hey, H. Saliva Interleukin-6 in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 40, 1444–1448 (2005).
pubmed: 16316893 doi: 10.1080/00365520510023774
Szczeklik, K., Owczarek, D., Pytko-Polończyk, J., Kȩsek, B. & Mach, T. H. Proinflammatory cytokines in the saliva of patients with active and nonactive Crohn’s disease. Pol. Arch. Med. Wewn. 122, 200–208 (2012).
pubmed: 22538761
Rezaie, A. et al. Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-β1 in relation to disease activity in Crohn’s disease patients. Ann. N. Y. Acad. Sci. 1091, 110–122 (2006).
pubmed: 17341608 doi: 10.1196/annals.1378.060
Rezaie, A. et al. Study on the correlations among disease activity index and salivary transforming growth factor-β1 and nitric oxide in ulcerative colitis patients. Ann. N. Y. Acad. Sci. 1095, 305–314 (2007).
pubmed: 17404043 doi: 10.1196/annals.1397.034
Lamster, I. B., Rodrick, M. L., Sonis, S. T. & Falchuk, Z. M. An analysis of peripheral blood and salivary polymorphonuclear leukocyte function, circulating immune complex levels and oral status in patients with inflammatory bowel disease. J. Periodontol. 53, 231–238 (1982).
pubmed: 6951992 doi: 10.1902/jop.1982.53.4.231
van Dyke, T. E., Dowell, V. R., Offenbacher, S., Snyder, W. & Hersh, T. Potential role of microorganisms isolated from periodontal lesions in the pathogenesis of inflammatory bowel disease. Infect. Immun. 53, 671–677 (1986).
pubmed: 3462153 pmcid: 260846 doi: 10.1128/iai.53.3.671-677.1986
Fournier, B. M. & Parkos, C. A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 5, 354–366 (2012).
pubmed: 22491176 doi: 10.1038/mi.2012.24
Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).
pubmed: 25234148 doi: 10.1038/nri3738
Antoni, L., Nuding, S., Wehkamp, J. & Stange, E. F. Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol. 20, 1165–1179 (2014).
pubmed: 24574793 pmcid: 3921501 doi: 10.3748/wjg.v20.i5.1165
Friedrich, M., Pohin, M. & Powrie, F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50, 992–1006 (2019).
pubmed: 30995511 doi: 10.1016/j.immuni.2019.03.017
Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).
pubmed: 23393266 pmcid: 4004111 doi: 10.1126/science.1232467
Nassar, M. et al. GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa. Proc. Natl Acad. Sci. USA 114, E337–E346 (2017).
pubmed: 28049839 pmcid: 5255577 doi: 10.1073/pnas.1614926114
Duran-Pinedo, A. E. et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 8, 1659–1672 (2014).
pubmed: 24599074 pmcid: 4817619 doi: 10.1038/ismej.2014.23
Goggins, M. G. et al. Increased urinary nitrite, a marker of nitric oxide, in active inflammatory bowel disease. Mediators Inflamm. 10, 69–73 (2001).
pubmed: 11405552 pmcid: 1781692 doi: 10.1080/09629350120054536
Avdagić, N. et al. Nitric oxide as a potential biomarker in inflammatory bowel disease. Bosn. J. Basic Med. Sci. 13, 5–9 (2013).
pubmed: 23448603 pmcid: 4333920 doi: 10.17305/bjbms.2013.2402
Ali, O. T. et al. Nitrite and nitrate levels of gingival crevicular fluid and saliva in subjects with gingivitis and chronic periodontitis. J. Oral Maxillofac. Res. 5, e5 (2014).
Hyde, E. R. et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One 9, e88645 (2014).
pubmed: 24670812 pmcid: 3966736 doi: 10.1371/journal.pone.0088645
Kitamoto, S. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462.e14 (2020).
pubmed: 32758418 pmcid: 7414097 doi: 10.1016/j.cell.2020.05.048
Bamias, G. & Cominelli, F. Role of type 2 immunity in intestinal inflammation. Curr. Opin. Gastroenterol. 31, 471–476 (2015).
pubmed: 26376478 pmcid: 4668267 doi: 10.1097/MOG.0000000000000212
Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306 (2011).
pubmed: 21677746 doi: 10.1038/nature10208
Komiya, Y. et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 68, 1335–1337 (2018).
pubmed: 29934439 doi: 10.1136/gutjnl-2018-316661
Mahendran, V. et al. Delineation of genetic relatedness and population structure of oral and enteric Campylobacter concisus strains by analysis of housekeeping genes. Microbiology 161, 1600–1612 (2015).
pubmed: 26002953 doi: 10.1099/mic.0.000112
Ismail, Y. et al. Investigation of the enteric pathogenic potential of oral Campylobacter concisus strains isolated from patients with inflammatory bowel disease. PLoS One 7, e38217 (2012).
pubmed: 22666490 pmcid: 3364211 doi: 10.1371/journal.pone.0038217
Chung, H. K. L. et al. Genome analysis of Campylobacter concisus strains from patients with inflammatory bowel disease and gastroenteritis provides new insights into pathogenicity. Sci. Rep. 6, 38442 (2016).
pubmed: 27910936 pmcid: 5133609 doi: 10.1038/srep38442
Wang, Y. et al. Campylobacter concisus genomospecies 2 is better adapted to the human gastrointestinal tract as compared with Campylobacter concisus genomospecies 1. Front. Physiol. 8, 543 (2017).
pubmed: 28824443 pmcid: 5541300 doi: 10.3389/fphys.2017.00543
Liu, F. et al. Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active Crohn’s disease. Emerg. Microbes Infect. 7, 64 (2018).
pubmed: 29636463 pmcid: 5893538 doi: 10.1038/s41426-018-0065-6
Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).
pubmed: 29555994 pmcid: 6108420 doi: 10.1038/nature25979
Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. mBio 6, e01693-15 (2015).
Shaw, L. P. et al. Modelling microbiome recovery after antibiotics using a stability landscape framework. ISME J. 13, 1845–1856 (2019).
pubmed: 30877283 pmcid: 6591120 doi: 10.1038/s41396-019-0392-1
Oswal, S., Ravindra, S., Sinha, A. & Manjunath, S. Antibiotics in periodontal surgeries: A prospective randomised cross over clinical trial. J. Indian. Soc. Periodontol. 18, 570–574 (2014).
pubmed: 25425817 pmcid: 4239745 doi: 10.4103/0972-124X.142443
Bernstein, C. N. Is antibiotic use a cause of IBD worldwide? Inflamm. Bowel Dis. 26, 448–449 (2020).
pubmed: 31265061
Horliana, A. C. R. T. et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: a systematic review. PLoS One 9, e98271 (2014).
pubmed: 24870125 pmcid: 4037200 doi: 10.1371/journal.pone.0098271
Kojima, A. et al. Aggravation of inflammatory bowel diseases by oral streptococci. Oral. Dis. 20, 359–366 (2014).
pubmed: 23679203 doi: 10.1111/odi.12125
Goren, I. et al. Risk of bacteremia in hospitalised patients with inflammatory bowel disease: a 9-year cohort study. United European Gastroenterol. J. 8, 195–203 (2020).
pubmed: 32213075 doi: 10.1177/2050640619874524
Xue, Y. et al. Indoleamine 2,3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages. Cell Death Dis. 9, 355 (2018).
pubmed: 29500439 pmcid: 5834448 doi: 10.1038/s41419-018-0389-0
Parhi, L. et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 3295 (2020).
doi: 10.1038/s41467-020-16967-2
Seedorf, H. et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253–266 (2014).
pubmed: 25284151 pmcid: 4194163 doi: 10.1016/j.cell.2014.09.008
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
pubmed: 27126040 pmcid: 5240844 doi: 10.1126/science.aad3369
Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).
pubmed: 26657899 doi: 10.1136/gutjnl-2015-310376
Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749–756 (2016).
pubmed: 26719299 doi: 10.1136/gutjnl-2015-310861
Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).
pubmed: 31953381 pmcid: 6969170 doi: 10.1038/s41467-019-14177-z
Hojo, M. et al. Gut microbiota composition before and after use of proton pump inhibitors. Dig. Dis. Sci. 63, 2940–2949 (2018).
pubmed: 29796911 pmcid: 6182435 doi: 10.1007/s10620-018-5122-4
Mishiro, T. et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J. Gastroenterol. Hepatol. 33, 1059–1066 (2018).
pubmed: 29105152 doi: 10.1111/jgh.14040
Schwartz, N. R. M. et al. Proton pump inhibitors, H2 blocker use, and risk of inflammatory bowel disease in children. J. Pediatr. Pharmacol. Ther. 24, 489–496 (2019).
pubmed: 31719810 pmcid: 6836698
Juillerat, P. et al. Drugs that inhibit gastric acid secretion may alter the course of inflammatory bowel disease. Aliment. Pharmacol. Ther. 36, 239–247 (2012).
pubmed: 22670722 doi: 10.1111/j.1365-2036.2012.05173.x
Shah, R., Richardson, P., Yu, H., Kramer, J. & Hou, J. K. Gastric acid suppression is associated with an increased risk of adverse outcomes in inflammatory bowel disease. Digestion 95, 188–193 (2017).
pubmed: 28288458 doi: 10.1159/000455008
Liu, H. et al. Fusobacterium nucleatum exacerbates colitis by damaging epithelial barrier and inducing aberrant inflammation. J. Dig. Dis. 21, 385–398 (2020).
pubmed: 32441482 doi: 10.1111/1751-2980.12909
Caballero, S. et al. Distinct but spatially overlapping intestinal niches for vancomycin-resistant enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae. PLoS Pathog. 11, e1005132 (2015).
pubmed: 26334306 pmcid: 4559429 doi: 10.1371/journal.ppat.1005132
Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).
pubmed: 23954158 pmcid: 3770529 doi: 10.1016/j.chom.2013.07.012
Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. 20, e47638 (2019).
pubmed: 30833345 pmcid: 6446206 doi: 10.15252/embr.201847638
Maroncle, N., Balestrino, D., Rich, C. & Forestier, C. Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect. Immun. 70, 4729–4734 (2002).
pubmed: 12117993 pmcid: 128202 doi: 10.1128/IAI.70.8.4729-4734.2002
Hsu, C. R. et al. Klebsiella pneumoniae translocates across the intestinal epithelium via rho GTPase-and phosphatidylinositol 3-kinase/Akt-dependent cell invasion. Infect. Immun. 83, 769–779 (2015).
pubmed: 25452552 pmcid: 4294243 doi: 10.1128/IAI.02345-14
Lee, I. A. & Kim, D. H. Klebsiella pneumoniae increases the risk of inflammation and colitis in a murine model of intestinal bowel disease. Scand. J. Gastroenterol. 46, 684–693 (2011).
pubmed: 21410316 doi: 10.3109/00365521.2011.560678
Deshpande, N. P. et al. Campylobacter concisus pathotypes induce distinct global responses in intestinal epithelial cells. Sci. Rep. 6, 34288 (2016).
pubmed: 27677841 pmcid: 5039708 doi: 10.1038/srep34288
Kaakoush, N. O. et al. The pathogenic potential of Campylobacter concisus strains associated with chronic intestinal diseases. PLoS One 6, e29045 (2011).
pubmed: 22194985 pmcid: 3237587 doi: 10.1371/journal.pone.0029045
Tang, B. et al. Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 cells. PLoS One 11, e0165701 (2016).
pubmed: 27828984 pmcid: 5102440 doi: 10.1371/journal.pone.0165701
Dharmani, P., Strauss, J., Ambrose, C., Allen-Vercoe, E. & Chadee, K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect. Immun. 79, 2597–2607 (2011).
pubmed: 21536792 pmcid: 3191979 doi: 10.1128/IAI.05118-11
Pope, J. L. et al. Microbial colonization coordinates the pathogenesis of a Klebsiella pneumoniae infant isolate. Sci. Rep. 9, 3380 (2019).
pubmed: 30833613 pmcid: 6399262 doi: 10.1038/s41598-019-39887-8
Mahendran, V. et al. Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathog. 8, 18 (2016).
pubmed: 27195022 pmcid: 4870807 doi: 10.1186/s13099-016-0101-9
Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).
pubmed: 25680274 pmcid: 4361732 doi: 10.1016/j.immuni.2015.01.010
Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10, 717–725 (2012).
pubmed: 22941505 pmcid: 3498498 doi: 10.1038/nrmicro2873
Gupta, V. K. et al. A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 11, 4635 (2020).
pubmed: 32934239 pmcid: 7492273 doi: 10.1038/s41467-020-18476-8
Vieira-Silva, S. et al. Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat. Microbiol. 4, 1826–1831 (2019).
pubmed: 31209308 doi: 10.1038/s41564-019-0483-9
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
pubmed: 31142855 pmcid: 6650278 doi: 10.1038/s41586-019-1237-9
Ryan, F. J. et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat. Commun. 11, 1512 (2020).
pubmed: 32251296 pmcid: 7089947 doi: 10.1038/s41467-020-15342-5
Tang, Q. et al. Current sampling methods for gut microbiota: a call for more precise devices. Front. Cell Infect. Microbiol. 10, 151 (2020).
pubmed: 32328469 pmcid: 7161087 doi: 10.3389/fcimb.2020.00151
Man, S. M. et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J. Infect. Dis. 202, 1855–1865 (2010).
pubmed: 21050118 doi: 10.1086/657316
Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).
pubmed: 30546113 pmcid: 6589823 doi: 10.1038/s41579-018-0129-6
Mohammed, H. et al. Oral dysbiosis in pancreatic cancer and liver cirrhosis: a review of the literature. Biomedicines 6, 115 (2018).
pmcid: 6316311 doi: 10.3390/biomedicines6040115
Karlsen, T. H., Folseraas, T., Thorburn, D. & Vesterhus, M. Primary sclerosing cholangitis – a comprehensive review. J. Hepatol. 67, 1298–1323 (2017).
pubmed: 28802875 doi: 10.1016/j.jhep.2017.07.022
De Vries, A. B., Janse, M., Blokzijl, H. & Weersma, R. K. Distinctive inflammatory bowel disease phenotype in primary sclerosing cholangitis. World J. Gastroenterol. 21, 1956–1971 (2015).
pubmed: 25684965 pmcid: 4323476 doi: 10.3748/wjg.v21.i6.1956
Iwasawa, K. et al. Dysbiosis of the salivary microbiota in pediatric-onset primary sclerosing cholangitis and its potential as a biomarker. Sci. Rep. 8, 5480 (2018).
pubmed: 29615776 pmcid: 5882660 doi: 10.1038/s41598-018-23870-w
Bajer, L. et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 23, 4548–4558 (2017).
pubmed: 28740343 pmcid: 5504370 doi: 10.3748/wjg.v23.i25.4548
Sebastian, S. et al. Colorectal cancer in inflammatory bowel disease: results of the 3rd ECCO pathogenesis scientific workshop (I). J. Crohns Colitis 8, 5–18 (2014).
pubmed: 23664897 doi: 10.1016/j.crohns.2013.04.008
Ternes, D. et al. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol. 28, 401–423 (2020).
pubmed: 32298617 doi: 10.1016/j.tim.2020.01.001
Kim, G. W. et al. Periodontitis is associated with an increased risk for proximal colorectal neoplasms. Sci. Rep. 9, 7528 (2019).
pubmed: 31101852 pmcid: 6525177 doi: 10.1038/s41598-019-44014-8
Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67, 1454–1463 (2018).
doi: 10.1136/gutjnl-2017-314814 pubmed: 28988196
Abed, J. et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016).
pubmed: 27512904 pmcid: 5465824 doi: 10.1016/j.chom.2016.07.006

Auteurs

Emily Read (E)

Centre for Host-Microbiome Interactions, King's College London, London, UK.
Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, King's College London, London, UK.

Michael A Curtis (MA)

Centre for Host-Microbiome Interactions, King's College London, London, UK.

Joana F Neves (JF)

Centre for Host-Microbiome Interactions, King's College London, London, UK. joana.pereira_das_neves@kcl.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH