Predicting acute suicidal ideation on Instagram using ensemble machine learning models.

Digital phenotyping Machine learning Social media Suicidal ideation Suicide prediction

Journal

Internet interventions
ISSN: 2214-7829
Titre abrégé: Internet Interv
Pays: Netherlands
ID NLM: 101631612

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 12 11 2020
revised: 17 06 2021
accepted: 02 07 2021
entrez: 17 8 2021
pubmed: 18 8 2021
medline: 18 8 2021
Statut: epublish

Résumé

Online social networking data (SN) is a contextually and temporally rich data stream that has shown promise in the prediction of suicidal thought and behavior. Despite the clear advantages of this digital medium, predictive modeling of acute suicidal ideation (SI) currently remains underdeveloped. SN data, in conjunction with robust machine learning algorithms, may offer a promising way forward. We applied an ensemble machine learning model on a previously published dataset of adolescents on Instagram with a prior history of lifetime SI ( Linguistic and SN data predicted acute SI with an accuracy of 0.702 (sensitivity = 0.769, specificity = 0.654, AUC = 0.775). Model introspection showed a higher proportion of SN-derived predictors with substantial impact on prediction compared with linguistic predictors from structured interviews. Further analysis of subject-specific predictor importance uncovered potentially informative trends for future acute SI risk prediction. Application of ensemble learning methodologies to SN data for the prediction of acute SI may mitigate the complexities and modeling challenges of SI that exist within these time scales. Future work is needed on larger, more heterogeneous populations to fine-tune digital biomarkers and more robustly test external validity.

Identifiants

pubmed: 34401383
doi: 10.1016/j.invent.2021.100424
pii: S2214-7829(21)00064-6
pmc: PMC8350610
doi:

Types de publication

Journal Article

Langues

eng

Pagination

100424

Subventions

Organisme : NIDA NIH HHS
ID : T32 DA037202
Pays : United States

Informations de copyright

© 2021 The Authors.

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Psychiatry. 1976 Feb;39(1):28-40
pubmed: 1257353
Am J Prev Med. 2014 Sep;47(3 Suppl 2):S176-80
pubmed: 25145736
Am J Public Health. 2012 May;102 Suppl 2:S195-200
pubmed: 22401525
Crisis. 2014;35(1):51-9
pubmed: 24121153
BMC Bioinformatics. 2018 Jun 13;19(Suppl 8):211
pubmed: 29897319
Crisis. 2011;32(3):128-33
pubmed: 21616761
Curr Psychiatry Rep. 2017 Mar;19(3):20
pubmed: 28315191
Psychiatry Res. 2012 Dec 30;200(2-3):872-8
pubmed: 22819276
Am J Psychiatry. 1999 Feb;156(2):181-9
pubmed: 9989552
Curr Opin Psychiatry. 2019 Jul;32(4):336-341
pubmed: 30855295
PLoS One. 2019 Sep 10;14(9):e0220623
pubmed: 31504042
Bioinformatics. 2003 Jun 12;19(9):1061-9
pubmed: 12801866
Crisis. 2006;27(3):147-8
pubmed: 17091826
J Affect Disord. 2019 May 1;250:163-169
pubmed: 30856493
Sci Rep. 2021 Jan 21;11(1):1980
pubmed: 33479383
J Stat Softw. 2010;33(1):1-22
pubmed: 20808728
J Med Internet Res. 2018 Jun 21;20(6):e215
pubmed: 29929945
Biomed Inform Insights. 2018 Aug 27;10:1178222618792860
pubmed: 30158822
Community Ment Health J. 1966 Jun;2(2):152-5
pubmed: 24190772
Proc SIGCHI Conf Hum Factor Comput Syst. 2016 May;2016:2098-2110
pubmed: 29082385
Psychiatry Res. 1990 Jan;31(1):99-108
pubmed: 2315425
JMIR Ment Health. 2016 May 16;3(2):e21
pubmed: 27185366
J Clin Psychiatry. 2013 Sep;74(9):887-93
pubmed: 24107762
Behav Res Methods. 2019 Feb;51(1):295-315
pubmed: 30120682
Psychol Bull. 2017 Feb;143(2):187-232
pubmed: 27841450
Online Soc Netw Media. 2017 Aug;2:32-44
pubmed: 29278258
Early Interv Psychiatry. 2016 Apr;10(2):103-21
pubmed: 25702826
BMC Bioinformatics. 2006 Feb 23;7:91
pubmed: 16504092
NPJ Digit Med. 2020 May 26;3:78
pubmed: 32509975
PLoS One. 2017 Aug 16;12(8):e0181722
pubmed: 28813437
N C Med J. 2020 Mar-Apr;81(2):116-121
pubmed: 32132255
Curr Opin Psychol. 2018 Aug;22:33-37
pubmed: 30122275

Auteurs

Damien Lekkas (D)

Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, United States of America.
Quantitative Biomedical Sciences Program, Dartmouth College, United States of America.

Robert J Klein (RJ)

Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, United States of America.

Nicholas C Jacobson (NC)

Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, United States of America.
Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, United States of America.

Classifications MeSH