Addition of ginkgo fruit to cattle feces and slurry suppresses methane production by altering the microbial community structure.


Journal

Animal science journal = Nihon chikusan Gakkaiho
ISSN: 1740-0929
Titre abrégé: Anim Sci J
Pays: Australia
ID NLM: 100956805

Informations de publication

Date de publication:
Historique:
revised: 20 06 2021
received: 14 05 2021
accepted: 26 07 2021
entrez: 17 8 2021
pubmed: 18 8 2021
medline: 16 2 2022
Statut: ppublish

Résumé

The effect of ginkgo fruit addition on methane production potential of cattle feces and slurry was assessed in relation to other fermentation products and the microbial community. Holstein cattle fresh feces and slurry were left at 30°C for 0, 30, 60, 90, and 180 days with/without ginkgo fruit to monitor the effect on fermentation potential. With the addition of ginkgo fruit, methane production potential of feces was reduced on Day 30 and thereafter, and that of slurry was consistently reduced over the experimental period. As a general trend, ginkgo fruit addition resulted in decreased acetate and increased propionate in feces and acetate accumulation in slurry. With ginkgo fruit addition, MiSeq analyses indicated decreases in methanogen (in particular Methanocorpusculum), Ruminococcaceae, and Clostridiaceae populations and increases in Bacteroidaceae and Porphyromonadaceae populations, which essentially agreed with quantitative real-time polymerase chain reaction (qPCR) assay results. These data indicate that direct addition of ginkgo fruit to cattle excreta is useful for reducing methane emissions by altering the microbial community structure. The application of ginkgo fruit to lower methane emissions from cattle excreta is, therefore, useful in cases in which the excreta is left without special management for a long period of time.

Identifiants

pubmed: 34402134
doi: 10.1111/asj.13620
doi:

Substances chimiques

Acetates 0
Methane OP0UW79H66

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13620

Subventions

Organisme : Japan Society for the Promotion of Science
ID : Grant-in-Aid for Scientific Research (B) / No. 18H
Organisme : Ministry of Education, Culture, Sports, Science and Technology
ID : 18H02322
Organisme : Cabinet Office, Government of Japan
Organisme : Cross-ministerial Moonshot Agriculture, Forestry and Fisheries Research and Development Program
ID : JPJ009237

Informations de copyright

© 2021 Japanese Society of Animal Science.

Références

AOAC. (2016). Official methods of analysis (20th ed.). USA: Association of Official Analytical Chemistry.
Borrel, G., Brugère, J. F., Gribaldo, S., Schmitz, R. A., & Moissl-Eichinger, C. (2020). The host-associated archaeome. Nature Reviews. Microbiology, 18, 622-636. https://doi.org/10.1038/s41579-020-0407-y
Caporaso, J. G., Kuczynski, J., Stombaugh, K., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336. https://doi.org/10.1038/nmeth.f.303
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 6, 1621-1624. https://doi.org/10.1038/ismej.2012.8
Daquiado, A. R., Cho, K. M., Kim, T. Y., Kim, S. C., Chang, H. H., & Lee, Y. B. (2014). Methanogenic archaea diversity in Hanwoo (Bos taurus coreanae) rumen fluid, rectal dung, and barn floor manure using a culture-independent method based on mcrA gene sequences. Anaerobe, 27, 77-81. https://doi.org/10.1016/j.anaerobe.2014.01.008
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
Feng, L., Ward, A. J., Moset, V., & Møller, H. B. (2018). Methane emission during on-site pre-storage of animal manure prior to anaerobic digestion at biogas plant: Effect of storage temperature and addition of food waste. Journal of Environmental Management, 225, 272-279. https://doi.org/10.1016/j.jenvman.2018.07.079
Food and Agriculture Organization of the United Nations (FAO). (2006). Livestock's long shadow. Part 3. Livestock's role in climate change and air pollution. pp. 80-99.
Gupta, P. K., Jha, A. K., Koul, S., Sharma, P., Pradhan, V., Guputa, V., Sharma, C., & Singh, N. (2007). Methane and nitrous oxide emission from bovine manure management practices in India. Environmental Pollution, 146, 219-224. https://doi.org/10.1016/j.envpol.2006.04.039
Herlemann, D. P. R., Labrenz, M., Jürgens, K., Betilsson, S., Waniek, J. J., & Andersson, A. F. (2011). Transition in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, 5, 1571-1579. https://doi.org/10.1038/ismej.2011.41
Husted, S. (1994). Seasonal variation in methane emission from stored slurry and solid manures. Journal of Environmental Quality, 23, 585-592. https://doi.org/10.2134/jeq1994.00472425002300030026x
Khan, R. Z., Muller, C., & Sommer, S. G. (1997). Micrometeorological mass balance technique for measuring CH4 emission from stored cattle slurry. Biology and Fertility of Soils, 24, 442-444. https://doi.org/10.1007/s003740050270
Kobayashi, Y., Oh, S., Myint, H., & Koike, S. (2016). Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. Journal of Animal Science and Biotechnology, 7, 70. https://doi.org/10.1186/s40104-016-0126-4
Koike, S., Yabuki, H., & Kobayashi, Y. (2007). Validation and application of real-time polymerase chain reaction assays for representative rumen bacteria. Animal Science Journal, 78, 135-141. https://doi.org/10.1111/j.1740-0929.2007.00417.x
Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., Ohta, S., & Kamikawa, T. (1993). Structure-antibacterial activity relationships of anacardic acids. Journal of Agricultural and Food Chemistry, 41, 1016-1019. https://doi.org/10.1021/jf00030a036
Liu, C., Guo, T. J., Chen, Y. X., Meng, Q. H., Zhu, C. X., & Huang, H. K. (2018). Physicochemical characteristics of stored cattle manure affect methane emissions by inducing divergence of methanogens that have different interactions with bacteria. Agriculture, Ecosystems and Environment, 253, 38-47. https://doi.org/10.1016/j.agee.2017.10.020
Liu, C., Zhu, Z. P., Liu, Y. F., Guo, T. J., & Dong, H. M. (2012). Diversity and abundance of the rumen and fecal methanogens in Altay sheep native to Xinjiang and the influence of diversity on methane emissions. Archives of Microbiology, 194, 353-361. https://doi.org/10.1007/s00203-011-0757-y
McDougall, E. I. (1948). Studies on ruminant saliva. Biochemical Journal, 43, 99-109. https://doi.org/10.1042/bj0430099
Mer, J. L., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37, 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
Monteny, G. J., Bannink, A., & Chadwick, D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems and Environment, 112, 163-170. https://doi.org/10.1016/j.agee.2005.08.015
Myint, H., Iwahashi, Y., Koike, S., & Kobayashi, Y. (2017). Effect of soybean husk supplementation on the fecal fermentation metabolites and microbiota of dogs. Animal Science Journal, 88, 1730-1736. https://doi.org/10.1111/asj.12817
Oh, S., Koike, S., & Kobayashi, Y. (2017). Effect of ginkgo extract supplementation on in vitro rumen fermentation and bacterial profiles under different dietary conditions. Animal Science Journal, 88, 1737-1743. https://doi.org/10.1111/asj.12877
Oh, S., Shintani, R., Koike, S., & Kobayashi, Y. (2017). Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production. Journal of Dairy Science, 100, 1923-1934. https://doi.org/10.3168/jds.2016-11928
Rastogi, G., Ranade, D. R., Yeole, T. Y., Gupta, A. K., Patole, M. S., & Shouche, Y. S. (2008). Molecular analyses of methanogen diversity associated with cattle dung. World Journal of Microbiology and Biotechnology, 24, 2973-2979. https://doi.org/10.1007/s11274-008-9840-1
Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61, 262-280. https://doi.org/10.1128/mmbr.61.2.262-280.1997
Sowers, K. R. (2009). Methanogenesis. In Encyclopedia of microbiology (third ed.) (pp. 265-286). Academic Press. https://doi.org/10.1016/B978-012373944-5.00079-1
Su, C., Shinkai, T., Miyazawa, N., Mitsumori, M., Enishi, O., Nagashima, K., Koike, S., & Kobayashi, Y. (2021). Microbial community structure of the bovine rumen as affected by feeding cashew nut shell liquid, a methane-inhibiting and propionate-enhancing agent. Animal Science Journal, 92, e13503.
Takai, K., & Horikoshi, K. (2000). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 66, 5066-5072. https://doi.org/10.1128/AEM.66.11.5066-5072.2000https://doi.org/10.1111/asj.13503
United States Environmental Protection Agency (USEPA). (2004). Chapter 1. Overview of Biogas Technology. In AgSTAR handbook: A manual for developing biogas systems at commercial farms in United States (pp. 1-6). Cincinnati, Ohio, USA: National Service Center for Environmental Publications Warehouse. http://nepis.epa.gov/Exe/ZyPDF.cgi/P1008VFM.PDF?Dockey=P1008VFM.PDF
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Watabe, Y., Suzuki, Y., Koike, S., Shimamoto, S., & Kobayashi, Y. (2018). Cellulose acetate, a new candidate feed supplement for ruminant animals: In vitro evaluations. Journal of Dairy Science, 101, 10929-10938.
Watanabe, Y., Suzuki, R., Koike, S., Nagashima, K., Mochizuki, M., Forster, R. J., & Kobayashi, Y. (2010). In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. Journal of Dairy Science, 93, 5258-5267. https://doi.org/10.3168/jds.2009-2754
Weatherburn, M. W. (1967). Phenol-hypochloride reaction for determination of ammonia. Analytical Chemistry, 39, 971-974. https://doi.org/10.1021/ac60252a045
Wong, K., Shaw, T. I., Oladeinde, A., Glenn, T. C., Oakley, B., & Molina, M. (2016). Rapid microbiome changes in freshly deposited cow feces under field conditions. Frontiers in Microbiology, 7, 500.
Yamada, H., Watabe, Y., Suzuki, Y., Koike, S., Shimamoto, S., & Kobayashi, Y. (2020). Chemical and microbial characterization for fermentation of water-soluble cellulose acetate in human stool cultures. Journal of the Science of Food and Agriculture, 101, 2950-2960.
Yamulki, S. (2005). Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures. Agriculture, Ecosystems and Environment, 112, 140-145.
Yu, Z., & Morrison, M. (2004). Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques, 36, 808-812. https://doi.org/10.2144/04365ST04
Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research, 37, 207-211. https://doi.org/10.1007/BF00748939

Auteurs

Risa Shintani (R)

Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Seongjin Oh (S)

Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Yutaka Suzuki (Y)

Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Satoshi Koike (S)

Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Yasuo Kobayashi (Y)

Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH