Neuroprotective Potential of Berberine Against Doxorubicin-Induced Toxicity in Rat's Brain.
Acetylcholinesterase
Berberine
Chemotherapy
Doxorubicin
Neuroprotective
Neurotoxicity
Journal
Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
09
06
2021
accepted:
12
08
2021
revised:
10
08
2021
pubmed:
18
8
2021
medline:
10
2
2022
entrez:
17
8
2021
Statut:
ppublish
Résumé
Chemotherapy-associated neurotoxicity is one of the principal side-effects for doxorubicin (DOX)-treated cancer patients. Despite its poor-penetration across the blood-brain barrier (BBB), DOX is linked to the induction of oxidative stress and neuroinflammation. Berberine (BEB) is a natural polyphenolic alkaloid, which exhibits unique antioxidant activity and anti-inflammatory potential. The present study was performed to investigate the neuroprotective potential of BEB in a rodent model of DOX-induced neurotoxicity. Neurotoxicity was induced in rats via a single acute dose of DOX (20 mg/kg/week, i.p.). BEB was administered at 50 mg/kg/day orally for 10 days before and 4 days after DOX administration. Brain acetylcholinesterase (AChE) activities were evaluated. Oxidative stress was investigated via the colorimetric determination of lipid peroxides, glutathione reduced (GSH) contents and catalase (CAT) activities in the brain tissue. In addition, DOX-induced genotoxicity was evaluated using comet assay. DOX produced a significant elevation in AChE activities. Additionally, DOX provoked oxidative stress as evidenced from the significant elevation in lipid peroxidation along with depletion in GSH contents and CAT activities. Moreover, DOX resulted in neuroinflammation as indicated by the elevation of pro-inflammatory mediator glial fibrillary acid protein (GFAP), as well as, the pro-apoptotic nuclear factor kappa B (NF-κB) and caspase-3 in brain tissue. Co-treatment with BEB significantly counteracted DOX-induced oxidative stress, neuroinflammation and genotoxicity. Histopathological and immunohistochemical examination supported the biochemical results. BEB demonstrated neuroprotective potential through exerting cholinergic, anti-oxidative, genoprotective, anti-inflammatory, and anti-apoptotic activities. Our findings present BEB as a promising "pre-clinical" neuroprotective agent against DOX-induced neurotoxicity during anti-neoplastic therapy.
Identifiants
pubmed: 34403065
doi: 10.1007/s11064-021-03428-5
pii: 10.1007/s11064-021-03428-5
doi:
Substances chimiques
Antibiotics, Antineoplastic
0
Antioxidants
0
Neuroprotective Agents
0
Berberine
0I8Y3P32UF
Doxorubicin
80168379AG
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3247-3263Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Schultz L, Zurich MG, Culot M, da Costa A, Landry C et al (2015) Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro 30(1):138–165
pubmed: 26026931
doi: 10.1016/j.tiv.2015.05.016
Borai IH, Ezz MK, Rizk MZ, Aly HF, El-Sherbiny M, Matloub AA, Fouad GI (2017) Therapeutic impact of grape leaves polyphenols on certain biochemical and neurological markers in AlCl
pubmed: 28715867
doi: 10.1016/j.biopha.2017.07.038
Ibrahim Fouad G (2021) The neuropathological impact of COVID-19: a review. Bull Natl Res Cent 45(1):1–9
doi: 10.1186/s42269-020-00478-7
Ibrahim Fouad G (2020) Combination of omega 3 and coenzyme Q10 exerts neuroprotective potential against hypercholesterolemia-induced Alzheimer’s-like disease in rats. Neurochem Res 45(5):1142–1155. https://doi.org/10.1007/s11064-020-02996-2
doi: 10.1007/s11064-020-02996-2
pubmed: 32124160
Jordan B, Margulies A, Cardoso F, Cavaletti G, Haugnes HS et al (2020) Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO–EONS–EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann Oncol 31(10):1306–1319
pubmed: 32739407
doi: 10.1016/j.annonc.2020.07.003
Loghin ME, Kleiman A (2020) Medication-induced neurotoxicity in critically Ill cancer patients. In: Nates J, Price K (eds) Oncologic critical care. Springer, Cham, pp 319–334. https://doi.org/10.1007/978-3-319-74588-6_32
doi: 10.1007/978-3-319-74588-6_32
Cavaletti G (2014) Chemotherapy-induced peripheral neurotoxicity (CIPN): what we need and what we know. J Peripher Nerv Syst 19(2):66–76. https://doi.org/10.1111/jns5.12073
doi: 10.1111/jns5.12073
pubmed: 24976572
Prša P, Karademir B, Biçim G et al (2020) The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem Pharmacol 173:113551
pubmed: 31185225
doi: 10.1016/j.bcp.2019.06.007
Eide S, Feng ZP (2020) Doxorubicin chemotherapy-induced “chemo-brain”: Meta-analysis. Eur J Pharmacol 881:173078
pubmed: 32505665
doi: 10.1016/j.ejphar.2020.173078
Cavaletti G, Alberti P, Marmiroli P (2015) Chemotherapy-induced peripheral neurotoxicity in cancer survivors: an underdiagnosed clinical entity? Am Soc Clin Oncol Educ Book. https://doi.org/10.14694/EdBook_AM.2015.35.e553
doi: 10.14694/EdBook_AM.2015.35.e553
pubmed: 25993222
Aluise CD, Sultana R, Tangpong J et al (2010) Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. Chemo Fog 678:147–156
doi: 10.1007/978-1-4419-6306-2_19
Hayslip J, Dressler EV, Weiss H et al (2015) Plasma TNF-α and soluble TNF receptor levels after doxorubicin with or without co-administration of mesna—a randomized, cross-over clinical study. PloS One 10(4):e0124988
pubmed: 25909710
pmcid: 4409356
doi: 10.1371/journal.pone.0124988
Sinha BK, Mason RP (2015) Is metabolic activation of topoisomerase II poisons important in the mechanism of cytotoxicity? J Drug Metab Toxicol 6(3):186
pubmed: 31171989
pmcid: 6548513
doi: 10.4172/2157-7609.1000186
Aluise CD, Miriyala S, Noel T et al (2011) 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med 50(11):1630–1638
pubmed: 21421044
doi: 10.1016/j.freeradbiomed.2011.03.009
Brantley-Finley C, Lyle CS, Du L et al (2003) The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol 66(3):459–469
pubmed: 12907245
doi: 10.1016/S0006-2952(03)00255-7
Cardinale D, Colombo A, Bacchiani G et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131(22):1981–1988
pubmed: 25948538
doi: 10.1161/CIRCULATIONAHA.114.013777
Heeba GH, Mahmoud ME (2016) Dual effects of quercetin in doxorubicin-induced nephrotoxicity in rats and its modulation of the cytotoxic activity of doxorubicin on human carcinoma cells. Environ Toxicol 31(5):624–636
pubmed: 25411067
Guzel EE, Tektemur NK, Tektemur A (2021) Alpha-lipoic acid may ameliorate testicular damage by targeting dox-induced altered antioxidant parameters, mitofusin-2 and apoptotic gene expression. Andrologia 53:e13990
Liu X, Qiu Y, Liu Y et al (2021) Citronellal ameliorates doxorubicin-induced hepatotoxicity via antioxidative stress, antiapoptosis, and proangiogenesis in rats. Biochem Mol Toxicol 35(2):e22639
doi: 10.1002/jbt.22639
Wang S, Konorev EA, Kotamraju S, Joseph J et al (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms: intermediacy of H
doi: 10.1074/jbc.M400944200
Rashid S, Ali N, Nafees S et al (2013) Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Method 23(5):337–345
doi: 10.3109/15376516.2012.759306
Kuzu M, Kandemir FM, Yildirim S, Kucukler S et al (2018) Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 106:443–453
pubmed: 29990832
doi: 10.1016/j.biopha.2018.06.161
Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L et al (2007) Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat 103(3):303–311
pubmed: 17009108
doi: 10.1007/s10549-006-9380-z
Salas-Ramirez KY, Bagnall C, Frias L et al (2015) Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res 292:133–141
pubmed: 26099816
pmcid: 4558256
doi: 10.1016/j.bbr.2015.06.028
Keeney JT, Ren X, Warrier G, Noel T et al (2018) Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget 9(54):30324
pubmed: 30100992
pmcid: 6084398
doi: 10.18632/oncotarget.25718
Merzoug S, Toumi ML, Boukhris N et al (2011) Adriamycin-related anxiety-like behavior, brain oxidative stress and myelotoxicity in male Wistar rats. Pharmacol Biochem Behav 99(4):639–647
pubmed: 21703296
doi: 10.1016/j.pbb.2011.06.015
Allen BD, Apodaca LA, Syage AR et al (2019) Attenuation of neuroinflammation reverses Adriamycin-induced cognitive impairments. Acta Neuropathol Commun 7(1):1–15
doi: 10.1186/s40478-019-0838-8
Janelsins MC, Kesler SR, Ahles TA, Morrow GR (2014) Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int Rev Psychiatry 26(1):102–113
pubmed: 24716504
pmcid: 4084673
doi: 10.3109/09540261.2013.864260
Sardi I, la Marca G, Cardellicchio S, Giunti L, Malvagia S, Genitori L et al (2013) Pharmacological modulation of blood–brain barrier increases permeability of doxorubicin into the rat brain. Am J Cancer Res 3(4):424
pubmed: 23977451
pmcid: 3744021
Carrasco R, Ramirez MC, Nes K et al (2020) Prevention of doxorubicin-induced cardiotoxicity by pharmacological non-hypoxic myocardial preconditioning based on docosahexaenoic acid (DHA) and carvedilol direct antioxidant effects: study protocol for a pilot, randomized, double-blind, controlled trial (CarDHA trial). Trials 21(1):137
pubmed: 32019575
pmcid: 7001267
doi: 10.1186/s13063-019-3963-6
Sergazy S, Shulgau Z, Fedotovskikh G, Chulenbayeva L et al (2020) Cardioprotective effect of grape polyphenol extract against doxorubicin induced cardiotoxicity. Sci Rep 10(1):1–12
doi: 10.1038/s41598-020-71827-9
Mohamed RH, Karam RA, Amer MGMG (2011) Epicatechin attenuates doxorubicin-induced brain toxicity: critical role of TNF-α, iNOS and NF-κB. Brain Res Bull 86(1–2):22–28
pubmed: 21763406
doi: 10.1016/j.brainresbull.2011.07.001
Stankovic JSK, Selakovic D, Mihailovic V, Rosic G (2020) Antioxidant supplementation in the treatment of neurotoxicity induced by platinum-based chemotherapeutics—a review. Int J Mol Sci 21(20):7753
pmcid: 7589133
doi: 10.3390/ijms21207753
Mohammed A, Janakiram NB, Pant S, Rao CV (2015) Molecular targeted intervention for pancreatic cancer. Cancers 7(3):1499–1542
pubmed: 26266422
pmcid: 4586783
doi: 10.3390/cancers7030850
Yue Q, Gao G, Zou G, Yu H, Zheng X (2017) Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int 2017:8412508
pubmed: 28232946
pmcid: 5292383
doi: 10.1155/2017/8412508
Li L, Leung PS (2014) Use of herbal medicines and natural products: an alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol 53:224–236
pubmed: 24875648
doi: 10.1016/j.biocel.2014.05.021
Li B, Gan R, Yang Q, Huang J, Chen P, Wan L, Guo C (2015) Chinese herbal medicines as an adjunctive therapy for unresectable pancreatic cancer: a systematic review and meta-analysis. Evid-Based Complement Alter Med. https://doi.org/10.1155/2015/350730
doi: 10.1155/2015/350730
Arayne MS, Sultana N, Bahadur SS (2007) The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci 20(1):83–92
pubmed: 17337435
Singh IP, Mahajan S (2013) Berberine and its derivatives: a patent review (2009–2012). Expert Opin Ther Pat 23(2):215–231
pubmed: 23231038
doi: 10.1517/13543776.2013.746314
Abd El-Wahab AE, Ghareeb DA, Sarhan EE, Abu-Serie MM, El Demellawy MA (2013) In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement Altern Med 13(1):1–12
doi: 10.1186/1472-6882-13-218
Ghareeb DA, Khalil S, Hafez HS, Bajorath J, Ahmed HE et al (2015) Berberine reduces neurotoxicity related to nonalcoholic steatohepatitis in rats. Evid-Based Complement Altern Med. https://doi.org/10.1155/2015/361847
doi: 10.1155/2015/361847
Ahmad S, Hussain A, Hussain A, Abdullah I, Ali MS et al (2019) Quantification of berberine in Berberis vulgaris L. root extract and its curative and prophylactic role in cisplatin-induced in vivo toxicity and in vitro cytotoxicity. Antioxidants 8(6):185
pmcid: 6616455
doi: 10.3390/antiox8060185
Chen X, Zhang Y, Zhu Z, Liu H, Guo H et al (2016) Protective effect of berberine on doxorubicin-induced acute hepatorenal toxicity in rats. Mol Med Rep 13(5):3953–3960
pubmed: 27035423
doi: 10.3892/mmr.2016.5017
Colvin LA (2019) Chemotherapy-induced peripheral neuropathy (CIPN): where are we now? Pain 160(Suppl 1):S1
pubmed: 31008843
pmcid: 6499732
doi: 10.1097/j.pain.0000000000001540
Hajra S, Patra AR, Basu A, Bhattacharya S (2018) Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed Pharmacother 101:228–243
pubmed: 29494960
doi: 10.1016/j.biopha.2018.02.088
Verma T, Mallik SB, Ramalingayya GV, Nayak PG et al (2017) Sodium valproate enhances doxorubicin-induced cognitive dysfunction in Wistar rats. Biomed Pharmacother 96:736–741
pubmed: 29049976
doi: 10.1016/j.biopha.2017.09.150
Mohammed HS, Hosny EN, Khadrawy YA, Magdy M et al (1866) (2020) Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim et Biophys Acta (BBA)-Mol Basis Dis 5:165665
Sadraie S, Kiasalari Z, Razavian M et al (2019) Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: insights into underlying molecular mechanisms. Metab Brain Dis 34:245–255. https://doi.org/10.1007/s11011-018-0349-5
doi: 10.1007/s11011-018-0349-5
pubmed: 30456649
Ohkawa H et al (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358
pubmed: 36810
doi: 10.1016/0003-2697(79)90738-3
Beutler E, Duron O, Kelly BM (1963) An improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888
pubmed: 13967893
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
doi: 10.1016/s0076-6879(84)05016-3
pubmed: 6727660
Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191
pubmed: 3345800
doi: 10.1016/0014-4827(88)90265-0
Suvarna KS, Layton C, Bancroft JD (eds) (2018) Bancroft’s theory and practice of histological techniques E-Book. Elsevier Health Sciences, London
El-Shiekh RA, Ashour RM, Abd El-Haleim EA et al (2020) A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice. Biomed Pharmacother 128:110303
pubmed: 32480228
doi: 10.1016/j.biopha.2020.110303
Park OK, Choi JH, Park JH, Kim IH, Yan BC, Ahn JH, Kwon SH, Lee JC, Kim YS, Kim M, Kang IJ, Kim JD, Lee YL, Won MH (2012) Comparison of neuroprotective effects of five major lipophilic diterpenoids from Danshen extract against experimentally induced transient cerebral ischemic damage. Fitoterapia 83:1666–1674
pubmed: 23022532
doi: 10.1016/j.fitote.2012.09.020
Youssef S, Abd-El-Aty OA, Mossalam M (2011) Effects of prenatal phenytoin toxicity on the expression of glial fibrillary acidic protein (GFAP) in the developing rat cerebellum. J Am Sci 7(8):139–152
Matsushita K, Wu Y, Qiu J, Lang-Lazdunski L et al (2000) Fas receptor and neuronal cell death after spinal cord ischemia. J Neurosci 20(18):6879–6887
pubmed: 10995832
pmcid: 6772830
doi: 10.1523/JNEUROSCI.20-18-06879.2000
Chin M, Yokoyama R, Sumi M, Okita H et al (2020) Multimodal treatment including standard chemotherapy with vincristine, doxorubicin, cyclophosphamide, ifosfamide, and etoposide for the Ewing sarcoma family of tumors in Japan: results of the Japan Ewing Sarcoma Study 04. Pediatr Blood Cancer 67(5):e28194
pubmed: 32077253
doi: 10.1002/pbc.28194
Leung WS, Kuo WW, Ju DT, Wang TD et al (2020) Protective effects of diallyl trisulfide (DATS) against doxorubicin-induced inflammation and oxidative stress in the brain of rats. Free Radic Biol Med 160:141–148
pubmed: 32745770
doi: 10.1016/j.freeradbiomed.2020.07.018
Pal S, Ahir M, Sil PC (2012) Doxorubicin-induced neurotoxicity is attenuated by a 43-kD protein from the leaves of Cajanus indicus L. via NF-κB and mitochondria dependent pathways. Free Radic Res 46(6):785–798
pubmed: 22448708
doi: 10.3109/10715762.2012.678841
Khadrawy YA, Hosny EN, Mohammed HS (2021) Protective effect of nanocurcumin against neurotoxicity induced by doxorubicin in rat’s brain. NeuroToxicology 85:1
pubmed: 33882267
doi: 10.1016/j.neuro.2021.04.003
Patil S, Tawari S, Mundhada D, Nadeem S (2015) Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav 136:13–20
pubmed: 26159088
doi: 10.1016/j.pbb.2015.07.001
Hussien HM, Abd-Elmegied A, Ghareeb DA, Hafez HS et al (2018) Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem Toxicol 111:432–444
pubmed: 29170048
doi: 10.1016/j.fct.2017.11.025
Ji HF, Shen L (2012) Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. Sci World J 2012:823201
doi: 10.1100/2012/823201
Patel M (2016) Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 37(9):768–778
pubmed: 27491897
pmcid: 5333771
doi: 10.1016/j.tips.2016.06.007
Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82
pubmed: 27809706
doi: 10.1080/01616412.2016.1251711
Shaker FH, El-Derany MO, Wahdan SA, El-Demerdash E, El-Mesallamy HO (2021) Berberine ameliorates doxorubicin-induced cognitive impairment (chemobrain) in rats. Life Sci 269:119078
pubmed: 33460662
doi: 10.1016/j.lfs.2021.119078
Tangpong J, Cole MP, Sultana R et al (2007) Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. Neurochemistry 100(1):191–201
doi: 10.1111/j.1471-4159.2006.04179.x
Mayer CA, Brunkhorst R, Niessner M, Pfeilschifter W et al (2013) Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PloS ONE 8(4):e62101
pubmed: 23626774
pmcid: 3633915
doi: 10.1371/journal.pone.0062101
Lei J, Gao G, Feng J, Jin Y et al (2015) Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Crit Care 19(1):1–12
doi: 10.1186/s13054-015-1081-8
Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5):249–263
pubmed: 25891508
pmcid: 5253239
doi: 10.1038/nrn3898
Siracusa R, Fusco R, Cuzzocrea S (2019) Astrocytes: role and functions in brain pathologies. Front Pharmacol 10:1114
pubmed: 31611796
pmcid: 6777416
doi: 10.3389/fphar.2019.01114
Cardoso CV, de Barros MP, Bachi ALL, Bernardi MM et al (2020) Chemobrain in rats: behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behav Brain Res 378:112233
pubmed: 31521736
doi: 10.1016/j.bbr.2019.112233
Ali MA, Menze ET, Tadros MG, Tolba MF (2020) Caffeic acid phenethyl ester counteracts doxorubicin-induced chemobrain in Sprague-Dawley rats: emphasis on the modulation of oxidative stress and neuroinflammation. Neuropharmacology 181:108334
pubmed: 33011199
doi: 10.1016/j.neuropharm.2020.108334
Rizk HA, Masoud MA, Maher OW (2017) Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J Biochem Mol Toxicol 31(12):e21977
doi: 10.1002/jbt.21977
Alhowail AH, Bloemer J, Majrashi M, Pinky PD et al (2019) Doxorubicin-induced neurotoxicity is associated with acute alterations in synaptic plasticity, apoptosis, and lipid peroxidation. Toxicol Mech Method 29(6):457–466
doi: 10.1080/15376516.2019.1600086
Quiles JL, Huertas JR, Batino M, Mataix J, Ramirez-Tortosa MC (2002) Antioxidants nutrients and adriamycin toxicity. Toxicology 180:79–95
pubmed: 12324201
doi: 10.1016/S0300-483X(02)00383-9
Choi SS, Lee HJ, Lim I, Satoh JI, Kim SU (2014) Human astrocytes: secretome profiles of cytokines and chemokines. PloS One 9(4):e92325
pubmed: 24691121
pmcid: 3972155
doi: 10.1371/journal.pone.0092325
Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2(1):1–9
Mattson MP, Kroemer G (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 9:196–205
pubmed: 12763524
doi: 10.1016/S1471-4914(03)00046-7
Ongnok B, Chattipakorn N, Chattipakorn SC (2020) Doxorubicin and cisplatin induced cognitive impairment: the possible mechanisms and interventions. Exp Neurol 324:113118
pubmed: 31756316
doi: 10.1016/j.expneurol.2019.113118
Moneim AEA (2015) The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis 30(4):935–942
pubmed: 25600690
doi: 10.1007/s11011-015-9652-6
Sadeghnia HR, Kolangikhah M, Asadpour E, Forouzanfar F et al (2017) Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. Iran J Basic Med Sci 20(5):594
pubmed: 28656094
pmcid: 5478787
Zhang Z, Li X, Li FL (2016) An, Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice. Int Immunopharmacol 38:426–433
pubmed: 27376853
doi: 10.1016/j.intimp.2016.06.031
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J (2019) The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett 24:36
pubmed: 31164908
pmcid: 6543624
doi: 10.1186/s11658-019-0158-9
Zhang Q, Qian Z, Pan L, Li H, Zhu H (2012) Hypoxia-inducible factor 1 mediates the anti-apoptosis of berberine in neurons during hypoxia/ischemia. Acta Physiol Hung 99(3):311–323
pubmed: 22982719
doi: 10.1556/APhysiol.99.2012.3.8
Wu YZ, Zhang L, Wu ZX, Shan TT, Xiong C (2019) Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev 2019:2150394
pubmed: 31885776
pmcid: 6918936
doi: 10.1155/2019/2150394
Wang J, Zhang Y (2018) Neuroprotective effect of berberine agonist against impairment of learning and memory skills in severe traumatic brain injury via Sirt1/p38 MAPK expression. Mol Med Rep 17(5):6881–6886
pubmed: 29512719
Rausch CR, Jabbour EJ, Kantarjian HM, Kadia TM (2020) Optimizing the use of the hyperCVAD regimen: clinical vignettes and practical management. Cancer 126(6):1152–1160
pubmed: 31794095
doi: 10.1002/cncr.32606