Approximate Intrinsic Voxel Structure for Point Cloud Simplification.
Journal
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
ISSN: 1941-0042
Titre abrégé: IEEE Trans Image Process
Pays: United States
ID NLM: 9886191
Informations de publication
Date de publication:
2021
2021
Historique:
pubmed:
18
8
2021
medline:
18
8
2021
entrez:
17
8
2021
Statut:
ppublish
Résumé
A point cloud as an information-intensive 3D representation usually requires a large amount of transmission, storage and computing resources, which seriously hinder its usage in many emerging fields. In this paper, we propose a novel point cloud simplification method, Approximate Intrinsic Voxel Structure (AIVS), to meet the diverse demands in real-world application scenarios. The method includes point cloud pre-processing (denoising and down-sampling), AIVS-based realization for isotropic simplification and flexible simplification with intrinsic control of point distance. To demonstrate the effectiveness of the proposed AIVS-based method, we conducted extensive experiments by comparing it with several relevant point cloud simplification methods on three public datasets, including Stanford, SHREC, and RGB-D scene models. The experimental results indicate that AIVS has great advantages over peers in terms of moving least squares (MLS) surface approximation quality, curvature-sensitive sampling, sharp-feature keeping and processing speed. The source code of the proposed method is publicly available. (https://github.com/vvvwo/AIVS-project).
Identifiants
pubmed: 34403339
doi: 10.1109/TIP.2021.3104174
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM