Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 08 2021
Historique:
received: 06 04 2021
accepted: 20 07 2021
entrez: 18 8 2021
pubmed: 19 8 2021
medline: 31 8 2021
Statut: epublish

Résumé

Between 10 and 20 million people worldwide are infected with the human T-cell lymphotropic virus type 1 (HTLV-1). Despite causing life-threatening pathologies there is no therapeutic regimen for this deltaretrovirus. Here, we screened a library of integrase strand transfer inhibitor (INSTI) candidates built around several chemical scaffolds to determine their effectiveness in limiting HTLV-1 infection. Naphthyridines with substituents in position 6 emerged as the most potent compounds against HTLV-1, with XZ450 having highest efficacy in vitro. Using single-particle cryo-electron microscopy we visualised XZ450 as well as the clinical HIV-1 INSTIs raltegravir and bictegravir bound to the active site of the deltaretroviral intasome. The structures reveal subtle differences in the coordination environment of the Mg

Identifiants

pubmed: 34404793
doi: 10.1038/s41467-021-25284-1
pii: 10.1038/s41467-021-25284-1
pmc: PMC8370991
doi:

Substances chimiques

Amides 0
Antiviral Agents 0
Heterocyclic Compounds, 3-Ring 0
Naphthyridines 0
Piperazines 0
Pyridones 0
Recombinant Proteins 0
bictegravir 8GB79LOJ07
HIV Integrase EC 2.7.7.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4996

Subventions

Organisme : Wellcome Trust
ID : 107005/Z/15Z
Pays : United Kingdom
Organisme : Arthritis Research UK
ID : FC001061
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : P50 AI150481
Pays : United States
Organisme : Wellcome Trust
ID : FC001061
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Cancer Research UK
ID : FC001061
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 206175/Z/17/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : FC001061
Pays : United Kingdom

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s).

Références

Tagaya, Y. & Gallo, R. C. The exceptional oncogenicity of HTLV-1. Front. Microbiol. 8, 1425 (2017).
pubmed: 28824561 pmcid: 5539117 doi: 10.3389/fmicb.2017.01425
Mahieux, R. & Gessain, A. Adult T-cell leukemia/lymphoma and HTLV-1. Curr. Hematol. Malig. Rep. 2, 257–264 (2007).
pubmed: 20425378 doi: 10.1007/s11899-007-0035-x
Matsuura, E. et al. HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP): a comparative study to identify factors that influence disease progression. J. Neurol. Sci. 371, 112–116 (2016).
pubmed: 27871430 doi: 10.1016/j.jns.2016.10.030
Gessain, A. & Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3, 388 (2012).
pubmed: 23162541 pmcid: 3498738 doi: 10.3389/fmicb.2012.00388
Rosadas, C. et al. Health state utility values in people living with HTLV-1 and in patients with HAM/TSP: the impact of a neglected disease on the quality of life. PLoS Negl. Trop. Dis. 14, e0008761 (2020).
pubmed: 33064742 pmcid: 7592910 doi: 10.1371/journal.pntd.0008761
Carneiro-Proietti, A. B. et al. Mother-to-child transmission of human t-cell lymphotropic viruses-1/2: what we know, and what are the gaps in understanding and preventing this route of infection. J. Pediatr. Infect. Dis. Soc. 3, S24–29 (2014).
doi: 10.1093/jpids/piu070
Laydon, D. J., Sunkara, V., Boelen, L., Bangham, C. R. M. & Asquith, B. The relative contributions of infectious and mitotic spread to HTLV-1 persistence. PLoS Comput. Biol. 16, e1007470 (2020).
pubmed: 32941445 pmcid: 7524007 doi: 10.1371/journal.pcbi.1007470
Marino-Merlo, F. et al. Antiretroviral therapy in HTLV-1 infection: an updated overview. Pathogens 9, 342 (2020).
Barski, M. S., Minnell, J. J. & Maertens, G. N. Inhibition of HTLV-1 infection by HIV-1 first- and second-generation integrase strand transfer inhibitors. Front. Microbiol. 10, 1877 (2019).
pubmed: 31474960 pmcid: 6705210 doi: 10.3389/fmicb.2019.01877
Zhao, X. Z. et al. HIV-1 integrase strand transfer inhibitors with reduced susceptibility to drug resistant mutant integrases. ACS Chem. Biol. 11, 1074–1081 (2016).
pubmed: 26808478 pmcid: 4836387 doi: 10.1021/acschembio.5b00948
Zhao, X. Z. et al. Structure-guided optimization of hiv integrase strand transfer inhibitors. J. Med. Chem. 60, 7315–7332 (2017).
pubmed: 28737946 pmcid: 5601359 doi: 10.1021/acs.jmedchem.7b00596
Espeseth, A. S. et al. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Natl. Acad. Sci. USA 97, 11244–11249 (2000).
pubmed: 11016953 pmcid: 17185 doi: 10.1073/pnas.200139397
Hare, S., Gupta, S. S., Valkov, E., Engelman, A. & Cherepanov, P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464, 232–236 (2010).
pubmed: 20118915 pmcid: 2837123 doi: 10.1038/nature08784
Passos, D. O. et al. Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science 367, 810–814 (2020).
pubmed: 32001521 pmcid: 7357238 doi: 10.1126/science.aay8015
Cook, N. J. et al. Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science 367, 806–810 (2020).
pubmed: 32001525 pmcid: 7023979 doi: 10.1126/science.aay4919
Barski, M. S. et al. Cryo-EM structure of the deltaretroviral intasome in complex with the PP2A regulatory subunit B56gamma. Nat. Commun. 11, 5043 (2020).
Boyer, P. L. et al. Developing and evaluating inhibitors against the RNase H active site of HIV-1 reverse transcriptase. J. Virol. 92, e02203-02217/02201-e02203–02217/02226 (2018).
doi: 10.1128/JVI.02203-17
Yan, Z. et al. HIV integrase inhibitors block replication of alpha-, beta-, and gammaherpesviruses. mBio 5, e01318–01314 (2014).
pubmed: 24987091 pmcid: 4161245 doi: 10.1128/mBio.01318-14
Bhatt, V. et al. Structural basis of host protein hijacking in human T-cell leukemia virus integration. Nat. Commun. 11, 3121 (2020).
pubmed: 32561747 pmcid: 7305164 doi: 10.1038/s41467-020-16963-6
Miura, M. et al. STLV-1-infected Japanese macaque as a model of HTLV-1 infection. Retrovirology 11, O12–O12 (2014).
pmcid: 4042625 doi: 10.1186/1742-4690-11-S1-O12
Hertz, E. P. T. et al. A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol. Cell 63, 686–695 (2016).
pubmed: 27453045 doi: 10.1016/j.molcel.2016.06.024
Kruse, T. et al. The ebola virus nucleoprotein recruits the host PP2A-B56 phosphatase to activate transcriptional support activity of VP30. Mol. Cell 69, 136–145 e136 (2018).
pubmed: 29290611 doi: 10.1016/j.molcel.2017.11.034
Tsiang, M. et al. Antiviral activity of bictegravir (GS-9883), a novel potent HIV-1 integrase strand transfer inhibitor with an improved resistance profile. Antimicrob. Agents Chemother. 60, 7086–7097 (2016).
pubmed: 27645238 pmcid: 5118987 doi: 10.1128/AAC.01474-16
King, N. M., Prabu-Jeyabalan, M., Nalivaika, E. A. & Schiffer, C. A. Combating susceptibility to drug resistance: lessons from HIV-1 protease. Chem. Biol. 11, 1333–1338 (2004).
pubmed: 15489160
Seegulam, M. E. & Ratner, L. Integrase inhibitors effective against human T-cell leukemia virus type 1. Antimicrob. Agents Chemother. 55, 2011–2017 (2011).
pubmed: 21343468 pmcid: 3088187 doi: 10.1128/AAC.01413-10
Hare, S. et al. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc. Natl. Acad. Sci. USA 107, 20057–20062 (2010).
pubmed: 21030679 pmcid: 2993412 doi: 10.1073/pnas.1010246107
Krishnan, L. et al. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc. Natl. Acad. Sci. USA 107, 15910–15915 (2010).
pubmed: 20733078 pmcid: 2936642 doi: 10.1073/pnas.1002346107
Metifiot, M. et al. Activities, crystal structures, and molecular dynamics of dihydro-1H-isoindole derivatives, inhibitors of HIV-1 integrase. ACS Chem. Biol. 8, 209–217 (2013).
pubmed: 23075516 doi: 10.1021/cb300471n
Raheem, I. T. et al. Discovery of 2-pyridinone aminals: a prodrug strategy to advance a second generation of HIV-1 integrase strand transfer inhibitors. J. Med. Chem. 58, 8154–8165 (2015).
pubmed: 26397965 doi: 10.1021/acs.jmedchem.5b01037
Schreier, J. D. et al. Discovery and optimization of 2-pyridinone aminal integrase strand transfer inhibitors for the treatment of HIV. Bioorg. Med. Chem. Lett. 27, 2038–2046 (2017).
pubmed: 28285916 doi: 10.1016/j.bmcl.2017.02.039
Machuca, A., Rodes, B. & Soriano, V. The effect of antiretroviral therapy on HTLV infection. Virus Res. 78, 93–100 (2001).
pubmed: 11520583 doi: 10.1016/S0168-1702(01)00287-8
Chouchana, L., Beeker, N. & Treluyer, J. M. Is there a safety signal for dolutegravir and integrase inhibitors during pregnancy? J. Acquir. Immune Defic. Syndr. 81, 481–486 (2019).
Rasi, V., Cortina-Borja, M., Peters, H., Sconza, R. & Thorne, C. Brief report: surveillance of congenital anomalies after exposure to raltegravir or elvitegravir during pregnancy in the United Kingdom and Ireland, 2008-2018. J. Acquir. Immune Defic. Syndr. 80, 264–268 (2019).
pubmed: 30531300 doi: 10.1097/QAI.0000000000001924
van der Galien, R. et al. Pharmacokinetics of HIV-integrase inhibitors during pregnancy: mechanisms, clinical implications and knowledge gaps. Clin. Pharmacokinet. 58, 309–323 (2019).
pubmed: 29915921 doi: 10.1007/s40262-018-0684-z
Podany, A. T., Scarsi, K. K., Pham, M. M. & Fletcher, C. V. Comparative clinical pharmacokinetics and pharmacodynamics of HIV-1 integrase strand transfer inhibitors: an updated review. Clin. Pharmacokinet. 59, 1085–1107 (2020).
pubmed: 32462541 pmcid: 7484053 doi: 10.1007/s40262-020-00898-8
Bartholomew, C. et al. Transmission of HTLV-I and HIV among homosexual men in Trinidad. JAMA 257, 2604–2608 (1987).
pubmed: 2883330 doi: 10.1001/jama.1987.03390190082024
Castro, L. S. et al. Human T cell lymphotropic virus type 1 infection among men who have sex with men in Central Brazil. Braz. J. Infect. Dis. 22, 472–476 (2018).
pubmed: 30528600 doi: 10.1016/j.bjid.2018.11.003
Nunes, D. et al. HTLV-1 is predominantly sexually transmitted in Salvador, the city with the highest HTLV-1 prevalence in Brazil. PLoS ONE 12, e0171303 (2017).
pubmed: 28158226 pmcid: 5291389 doi: 10.1371/journal.pone.0171303
Maertens, G. N. B’-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase. Nucleic Acids Res. 44, 364–376 (2016).
pubmed: 26657642 doi: 10.1093/nar/gkv1347
Langley, D. R. et al. The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors. Biochemistry 47, 13481–13488 (2008).
pubmed: 18991395 doi: 10.1021/bi801372d
Russo, C. J. & Passmore, L. A. Ultrastable gold substrates: properties of a support for high-resolution electron cryomicroscopy of biological specimens. J. Struct. Biol. 193, 33–44 (2016).
pubmed: 26592474 pmcid: 4711342 doi: 10.1016/j.jsb.2015.11.006
Lancey, C. et al. Structure of the processive human Pol delta holoenzyme. Nat. Commun. 11, 1109 (2020).
pubmed: 32111820 pmcid: 7048817 doi: 10.1038/s41467-020-14898-6
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
pubmed: 14568533 doi: 10.1016/j.jmb.2003.07.013
Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).
pubmed: 22842542 pmcid: 4912033 doi: 10.1038/nmeth.2115
Heymann, J. B. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci. 27, 159–171 (2018).
pubmed: 28891250 doi: 10.1002/pro.3293
Min, X. et al. Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics 18, 478 (2017).
pubmed: 29219068 pmcid: 5773911 doi: 10.1186/s12859-017-1878-3
Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. bioRxiv, 845032, https://doi.org/10.1101/845032 (2020).
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. Biol. Crystallogr 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Rowan, A. G. et al. T cell receptor Vbeta staining identifies the malignant clone in adult T cell leukemia and reveals killing of leukemia cells by autologous CD8+ T cells. PLoS Pathog. 12, e1006030 (2016).
pubmed: 27893842 pmcid: 5125714 doi: 10.1371/journal.ppat.1006030
Manivannan, K., Rowan, A. G., Tanaka, Y., Taylor, G. P. & Bangham, C. R. CADM1/TSLC1 identifies HTLV-1-infected cells and determines their susceptibility to CTL-mediated lysis. PLoS Pathog. 12, e1005560 (2016).
pubmed: 27105228 pmcid: 4841533 doi: 10.1371/journal.ppat.1005560
Alais, S., Mahieux, R. & Dutartre, H. Viral source-independent high susceptibility of dendritic cells to human T-cell leukemia virus type 1 infection compared to that of T lymphocytes. J. Virol. 89, 10580–10590 (2015).
pubmed: 26269171 pmcid: 4580172 doi: 10.1128/JVI.01799-15
Zhao, X. Z. et al. Development of tricyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett. 21, 2986–2990 (2011).
pubmed: 21493066 pmcid: 3085635 doi: 10.1016/j.bmcl.2011.03.047
Zhao, X. Z. et al. Bicyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Chem. Biol. Drug Des. 79, 157–165 (2012).
pubmed: 22107736 doi: 10.1111/j.1747-0285.2011.01270.x

Auteurs

Michal S Barski (MS)

Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK.
International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland.

Teresa Vanzo (T)

Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK.
Department CIBIO, University of Trento, Povo-Trento, Italy.

Xue Zhi Zhao (XZ)

Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Steven J Smith (SJ)

Retroviral Replication Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Allison Ballandras-Colas (A)

Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, UK.

Nora B Cronin (NB)

LonCEM Facility, The Francis Crick Institute, London, UK.

Valerie E Pye (VE)

Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, UK.

Stephen H Hughes (SH)

Retroviral Replication Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Terrence R Burke (TR)

Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Peter Cherepanov (P)

Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK.
Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, UK.

Goedele N Maertens (GN)

Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK. g.maertens@imperial.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH