Dynamic effect of three locking plates fixated to humeral fracture based on multibody musculoskeletal model.
AnyBody
T-fracture
double plates
multibody
musculoskeletal
Journal
The international journal of medical robotics + computer assisted surgery : MRCAS
ISSN: 1478-596X
Titre abrégé: Int J Med Robot
Pays: England
ID NLM: 101250764
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
revised:
16
08
2021
received:
27
03
2021
accepted:
16
08
2021
pubmed:
19
8
2021
medline:
10
11
2021
entrez:
18
8
2021
Statut:
ppublish
Résumé
This study attempts to analyse the biomechanical effect of internal fixation (plated in parallel or plated vertically) on the basis of distal humeral fractures on musculoskeletal multibody dynamics using AnyBody in Finite Element Method. Humeral 3D models were reconstructed by MIMICS after volunteers' CT image input in *.dicom format, and processed by Geomagic Studio for surfaces, while locking plates and screws were then designed by Pro-E. A humeral model of T-type fracture was created and assembled in Hypermesh, to integrate fixtures (e.g., MPL/PML/ML), to grid the mesh and then assign materials. A musculoskeletal model of the upper limb was established by AnyBody to simulate elbow flexion and extension. They were finally imported to Abaqus for boundary conditions and dynamic analysis. In terms of Von Mises stress, its maximum increased and then decreased gradually during the joint motion, but p > 0.05 in SPSS suggests no significant difference for all three fixtures. In terms of displacement, when the elbow was at 90°, each motional pattern reached its peak as follows: ML180° = 0.28 mm, MPL90° = 0.49 mm & PML90° = 0.54 mm during flexion; ML180° = 0.073 mm, MPL90° = 0.10 mm & PML90° = 0.12 mm during extension. p < 0.05 suggests a significant difference for the displacements of all three fixations. p = 0.007 < 0.01667 suggests the significant difference between the two fixations, for example, PML90° and ML180°, indicating that the peak displacement of ML180° is less than that of PML90°. After generally analysed in musculoskeletal dynamics, the biomechanical property of the fixtures was presented as follows: the displacement of the parallel plate was less than that of the vertical, and the parallel plate may optimise the clinical reduction anatomically.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2323Subventions
Organisme : 'Guangzhou Bureau of Science & Technology granted Peak Hospital', funded by Guangzhou Department of Science & Technology 2021
Organisme : High Educational Postgraduate Innovation Plan for Collaborative Base of Cultivation 2020
Organisme : Educational cultivation granted project of 1st Affiliated Hospital at Guangzhou Medical University
ID : 2018Z04
Organisme : Higher education reform granted project of Guangdong 2018
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Korner J, Lill H, Müller LP, Rommens PM, Schneider E, Linke B. The LCP-concept in the operative treatment of distal humerus fractures - biological, biomechanical and surgical aspects. Injury. 2003;34:20-30.
Bogataj M, Kosel F, Norris R, Krkovic M, Brojan M. Biomechanical study of different plate configurations for distal humerus osteosynthesis. Med Biol Eng Comput. 2015;53(5):381-392.
Nauth A, McKee MD, Ristevski B, Hall J, Schemitsch EH. Distal humeral fractures in adults. J Bone Jt Surg-Am Vol. 2011;93(7):686-700.
Flinkkilä T, Toimela J, Sirniö K, Leppilahti J. Results of parallel plate fixation of comminuted intra-articular distal humeral fractures. J Shoulder Elb Surg. 2014;23(5):701-707.
Lee SK, Kim KJ, Park KH, Choy WS. A comparison between orthogonal and parallel plating methods for distal humerus fractures: a prospective randomized trial. Eur J Orthop Surg Traumatol. 2014;24(7):1123-1131.
Sanchez-Sotelo J, Torchia M, O'Driscoll S. Principle-based internal fixation of distal humerus fractures. Tech Hand Up Extrem Surg. 2001;5(4):179-187.
Tejwani NC, Murthy A, Park J, McLaurin TM, Egol KA, Kummer FJ. Fixation of extra-articular distal humerus fractures using one locking plate versus two reconstruction plates: a laboratory study. J Trauma Inj Infect Crit Care. 2009;66(3):795-799.
Caravaggi P, Laratta J, Yoon RS, et al. Internal fixation of the distal humerus: a comprehensive biomechanical study evaluating current fixation techniques. J Orthop Trauma. 2014;28(4):222-226.
Jacobson S, Glisson R, Urbaniak J. Comparison of distal humerus fracture fixation: a biomechanical study. J South Orthop Assoc. 1997;6(4):241-249.
Schwartz A, Oka R, Odell T, Mahar A. Biomechanical comparison of two different periarticular plating systems for stabilization of complex distal humerus fractures. Clin Biomech. 2006;21(9):950-955.
Atalar AC, Tunalı O, Erşen A, Kapıcıoğlu M, Sağlam Y, Demirhan MS. Biomechanical comparison of orthogonal versus parallel double plating systems in intraarticular distal humerus fractures. Acta Orthop Traumatol Turcica. 2017;51(1):23-28.
Arnander M, Reeves A, MacLeod IAR, Pinto TM, Khaleel A. A biomechanical comparison of plate configuration in distal humerus fractures. J Orthop Trauma. 2008;22(5):332-336.
Stoffel K, Cunneen S, Morgan R, Nicholls R, Stachowiak G. Comparative stability of perpendicular versus parallel double-locking plating systems in osteoporotic comminuted distal humerus fractures. J Orthop Res. 2008;26(6):778-784.
Taylor ME, Tanner KE, Freeman MAR, Yettram AL. Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys. 1996;18(2):122-131.
Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. Analysis of musculoskeletal systems in the AnyBody modeling system. Simul Model Pract Theory. 2006;14(8):1100-1111.
Chu A, Hughes R. A method to determine whether a musculoskeletal model can resist arbitrary external loadings within a prescribed range. Comput Methods Biomech Biomed Eng. 2010;13(6):795-802.
Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech. 2000;33(10):1325-1330.
Knauß P. Material properties and strength behaviour of spongy bone tissue at the coxal human femur. Biomed Technol. 1981;26:200-210.
Zhao L, Tian D-M, Wei Y, et al. Biomechanical analysis of a novel intercalary prosthesis for humeral diaphyseal segmental defect reconstruction. Orthop Surg. 2018;10(1):23-31.
Robinson PS, Placide R, Soslowsky LJ, Born CT. Mechanical strength of repairs of the hip piriformis tendon. J Arthroplasty. 2004;19(2):204-210.
Frankenfield D, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition. 2001;17:26-30.
Rasmussen J, Damsgaard M, Voigt M. Muscle recruitment by the min/max criterion -- a comparative numerical study. J Biomech. 2001;34(3):409-415.
Zalavras CG, Vercillo MT, Jun B-J, Otarodifard K, Itamura JM, Lee TQ. Biomechanical evaluation of parallel versus orthogonal plate fixation of intra-articular distal humerus fractures. J Shoulder Elb Surg. 2011;20(1):12-20.
O'Driscoll SW. Optimizing stability in distal humeral fracture fixation. J Shoulder Elb Surg. 2005;14(1):S186-S194.
Shih C, Su W-R, Lin W-C, Tai T-W. Parallel versus orthogonal plate osteosynthesis of adult distal humerus fractures: a meta-analysis of biomechanical studies. Int Orthop. 2018;43(2):449-460.
Dubowsky SR, Rasmussen J, Sisto SA, Langrana NA. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimising shoulder joint forces. J Biomech. 2008;41(14):2981-2988.
Rajaee MA, Arjmand N, Shirazi-Adl A, Plamondon A, Schmidt H. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Appl Ergon. 2015;48:22-32.
Chander DS, Cavatorta MP. Multi-directional one-handed strength assessments using AnyBody Modelling Systems. Appl Ergon. 2018;67:225-236.
Stambolian D, Eltoukhy M, Asfour S. Development and validation of a three dimensional dynamic biomechanical lifting model for lower back evaluation for careful box placement. Int J Ind Ergon. 2016;54:10-18.
Bassani T, Stucovitz E, Qian Z, Briguglio M, Galbusera F. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J Biomech. 2017;58:1-22.
Chen Z, Zhang X, Ardestani MM, et al. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts. Proc Inst Mech Eng Part H J Eng Med. 2014;228(6):564-575.
Meijer K, van Geenhuizen JA, Liebrand HT, Meijer LI, Pas RJ, de Zee M. The functional consequences of muscle adaptation: a simulation in AnyBody. In: Doblaré, Cerrolaza, Rodrigues, eds. International Congress of Computational Bioengineering. Zaragossa; 2003:345-350.
Schwartz BE, Amirouche FML, Choi KW, Mejia A, Gonzalez M, Seiler JR. A finite element model of locked plating in femoral shaft fractures. Open J Orthop. 2014;4(4):104-112.
Harrysson Ola LA, Hosni YA, Nayfeh JF. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Muscoskel Disord. 2007;8(1):91.
Behrens B, Nolte I, Wefstaedt P, Stukenborg-Colsman C, Bouguecha A. Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: influence of the boundary conditions. Biomed Eng Online. 2009;7(8):1-9.
Ring D, Jupiter J. Fractures of the distal humeru. Orthop Clin N Am. 2000;31(1):103-113.
Eralp L, Kocaoglu M, Sar C, Atalar AC. Surgical treatment of distal intraarticular humeral fractures in adults. Int Orthop. 2001;25(1):46-50.
Sanchez-Sotelo J, Torchia ME, OʼDriscoll SW. Complex distal humeral fractures. J Bone & Jt Surg. 2007;89(5):961-969.