Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold.
clinical study
collagen scaffold
complete spinal cord injury
function recovery
Journal
Science China. Life sciences
ISSN: 1869-1889
Titre abrégé: Sci China Life Sci
Pays: China
ID NLM: 101529880
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
25
04
2021
accepted:
08
06
2021
pubmed:
19
8
2021
medline:
14
5
2022
entrez:
18
8
2021
Statut:
ppublish
Résumé
Spinal cord injury (SCI) often results in an inhibitory environment at the injury site. In our previous studies, transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal models of complete SCI. Based on these preclinical studies, collagen scaffolds loaded with the patients' own bone marrow mononuclear cells or human umbilical cord mesenchymal stem cells were transplanted into SCI patients. Fifteen patients with acute complete SCI and 51 patients with chronic complete SCI were enrolled and followed up for 2 to 5 years. No serious adverse events related to functional scaffold transplantation were observed. Among the patients with acute SCI, five patients achieved expansion of their sensory positions and six patients recovered sensation in the bowel or bladder. Additionally, four patients regained voluntary walking ability accompanied by reconnection of neural signal transduction. Among patients with chronic SCI, 16 patients achieved expansion of their sensation level and 30 patients experienced enhanced reflexive defecation sensation or increased skin sweating below the injury site. Nearly half of the patients with chronic cervical SCI developed enhanced finger activity. These long-term follow-up results suggest that functional scaffold transplantation may represent a feasible treatment for patients with complete SCI.
Identifiants
pubmed: 34406569
doi: 10.1007/s11427-021-1985-5
pii: 10.1007/s11427-021-1985-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
909-926Informations de copyright
© 2021. Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Adams, M.M., and Hicks, A.L. (2005). Spasticity after spinal cord injury. Spinal Cord 43, 577–586.
pubmed: 15838527
doi: 10.1038/sj.sc.3101757
Assinck, P., Duncan, G.J., Hilton, B.J., Plemel, J.R., and Tetzlaff, W. (2017). Cell transplantation therapy for spinal cord injury. Nat Neurosci 20, 637–647.
pubmed: 28440805
doi: 10.1038/nn.4541
Bartlett, R.D., Burley, S., Ip, M., Phillips, J.B., and Choi, D. (2020). Cell therapies for spinal cord injury: trends and challenges of current clinical trials. Neurosurgery 87, E456–E472.
pubmed: 32497197
doi: 10.1093/neuros/nyaa149
Cyranoski, D. (2019). Japan’s approval of stem-cell treatment for spinal-cord injury concerns scientists. Nature 565, 544–545.
pubmed: 30696963
doi: 10.1038/d41586-019-00178-x
Ditunno, J.F., Little, J.W., Tessler, A., and Burns, A.S. (2004). Spinal shock revisited: a four-phase model. Spinal Cord 42, 383–395.
pubmed: 15037862
doi: 10.1038/sj.sc.3101603
Fan, C., Li, X., Xiao, Z., Zhao, Y., Liang, H., Wang, B., Han, S., Li, X., Xu, B., Wang, N., et al. (2017). A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 51, 304–316.
pubmed: 28069497
doi: 10.1016/j.actbio.2017.01.009
Fan, C., Li, X., Zhao, Y., Xiao, Z., Xue, W., Sun, J., Li, X., Zhuang, Y., Chen, Y., and Dai, J. (2018). Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater Sci 6, 1723–1734.
pubmed: 29845137
doi: 10.1039/C8BM00363G
Fitch, M.T., and Silver, J. (2008). CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209, 294–301.
pubmed: 17617407
doi: 10.1016/j.expneurol.2007.05.014
Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 117, 2224–2241.
pubmed: 28298308
pmcid: 5454475
doi: 10.1152/jn.00978.2016
Führmann, T., Anandakumaran, P.N., and Shoichet, M.S. (2017). Combinatorial therapies after spinal cord injury: how can biomaterials help? Adv Healthcare Mater 6, 1601130.
doi: 10.1002/adhm.201601130
Gwak, Y.S., Hains, B.C., Johnson, K.M., and Hulsebosch, C.E. (2004). Effect of age at time of spinal cord injury on behavioral outcomes in rat. J Neurotrauma 21, 983–993.
pubmed: 15318998
doi: 10.1089/0897715041650999
Haas, U., and Geng, V. (2008). Sensation of defecation in patients with spinal cord injury. Spinal Cord 46, 107–112.
pubmed: 17438568
doi: 10.1038/sj.sc.3102067
Han, Q., Jin, W., Xiao, Z., Ni, H., Wang, J., Kong, J., Wu, J., Liang, W., Chen, L., Zhao, Y., et al. (2010). The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31, 9212–9220.
pubmed: 20869112
doi: 10.1016/j.biomaterials.2010.08.040
Han, S., Li, X., Xiao, Z., and Dai, J. (2018a). Complete canine spinal cord transection model: a large animal model for the translational research of spinal cord regeneration. Sci China Life Sci 61, 115–117.
pubmed: 28726160
doi: 10.1007/s11427-017-9049-y
Han, S., Wang, B., Jin, W., Xiao, Z., Li, X., Ding, W., Kapur, M., Chen, B., Yuan, B., Zhu, T., et al. (2015). The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 41, 89–96.
pubmed: 25522968
doi: 10.1016/j.biomaterials.2014.11.031
Han, S., Xiao, Z., Li, X., Zhao, H., Wang, B., Qiu, Z., Li, Z., Mei, X., Xu, B., Fan, C., et al. (2018b). Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 61, 2–13.
pubmed: 28527111
doi: 10.1007/s11427-016-9002-6
Han, S., Yin, W., Li, X., Wu, S., Cao, Y., Tan, J., Zhao, Y., Hou, X., Wang, L., Ren, C., et al. (2019). Pre-clinical evaluation of CBD-NT3 modified collagen scaffolds in completely spinal cord transected non-human primates. J Neurotrauma 36, 2316–2324.
pubmed: 30801232
doi: 10.1089/neu.2018.6078
Hatch, M.N., Cushing, T.R., Carlson, G.D., and Chang, E.Y. (2018). Neuropathic pain and SCI: Identification and treatment strategies in the 21st century. J Neurol Sci 384, 75–83.
pubmed: 29249383
doi: 10.1016/j.jns.2017.11.018
Illis, L.S. (2012). Central nervous system regeneration does not occur. Spinal Cord 50, 259–263.
pubmed: 22105462
doi: 10.1038/sc.2011.132
Jung, D.I., Ha, J., Kang, B.T., Kim, J.W., Quan, F.S., Lee, J.H., Woo, E.J., and Park, H.M. (2009). A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285, 67–77.
pubmed: 19555980
doi: 10.1016/j.jns.2009.05.027
Kawano, O., Maeda, T., Mori, E., Takao, T., Sakai, H., Masuda, M., Morishita, Y., Hayashi, T., Kubota, K., Kobayakawa, K., et al. (2020). How much time is necessary to confirm the diagnosis of permanent complete cervical spinal cord injury? Spinal Cord 58, 284–289.
pubmed: 31619753
doi: 10.1038/s41393-019-0366-1
Kirshblum, S.C., Burns, S.P., Biering-Sorensen, F., Donovan, W., Graves, D.E., Jha, A., Johansen, M., Jones, L., Krassioukov, A., Mulcahey, M.J., et al. (2011). International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34, 535–546.
pubmed: 22330108
pmcid: 3232636
doi: 10.1179/204577211X13207446293695
Li, X., Liu, D., Xiao, Z., Zhao, Y., Han, S., Chen, B., and Dai, J. (2019). Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 197, 20–31.
pubmed: 30639547
doi: 10.1016/j.biomaterials.2019.01.012
Li, X., Tan, J., Xiao, Z., Zhao, Y., Han, S., Liu, D., Yin, W., Li, J., Li, J., Wanggou, S., et al. (2017a). Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Sci Rep 7, 43559.
pubmed: 28262732
pmcid: 5337930
doi: 10.1038/srep43559
Li, X., Zhao, Y., Cheng, S., Han, S., Shu, M., Chen, B., Chen, X., Tang, F., Wang, N., Tu, Y., et al. (2017b). Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 137, 73–86.
pubmed: 28544974
doi: 10.1016/j.biomaterials.2017.05.027
Lin, H., Chen, B., Wang, B., Zhao, Y., Sun, W., and Dai, J. (2006). Novel nerve guidance material prepared from bovine aponeurosis. J Biomed Mater Res B Appl Biomater 79A, 591–598.
doi: 10.1002/jbm.a.30862
Liu, D., Li, X., Xiao, Z., Yin, W., Zhao, Y., Tan, J., Chen, B., Jiang, X., and Dai, J. (2019). Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 214, 119230.
pubmed: 31174066
doi: 10.1016/j.biomaterials.2019.119230
Mothe, A.J., and Tator, C.H. (2012). Advances in stem cell therapy for spinal cord injury. J Clin Invest 122, 3824–3834.
pubmed: 23114605
pmcid: 3484454
doi: 10.1172/JCI64124
Raineteau, O., and Schwab, M.E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2, 263–273.
pubmed: 11283749
doi: 10.1038/35067570
Rosenzweig, E.S., Courtine, G., Jindrich, D.L., Brock, J.H., Ferguson, A. R., Strand, S.C., Nout, Y.S., Roy, R.R., Miller, D.M., Beattie, M.S., et al. (2010). Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13, 1505–1510.
pubmed: 21076427
pmcid: 3144760
doi: 10.1038/nn.2691
Rupp, R. (2020). Spinal cord lesions. Handb Clin Neurol 168, 51–65.
pubmed: 32164868
doi: 10.1016/B978-0-444-63934-9.00006-8
Samdani, A.F., Paul, C., Betz, R.R., Fischer, I., and Neuhuber, B. (2009). Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord. Spine 34, 2605–2612.
pubmed: 19881401
doi: 10.1097/BRS.0b013e3181bdca87
Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., and Molinari, M. (2014a). Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci 8, 141.
pubmed: 24659962
pmcid: 3952432
doi: 10.3389/fnhum.2014.00141
Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., Molinari, M., and Ditunno, J.F. (2014b). Walking index for spinal cord injury version II in acute spinal cord injury: reliability and reproducibility. Spinal Cord 52, 65–69.
pubmed: 24145685
doi: 10.1038/sc.2013.127
Siegenthaler, M.M., Ammon, D.L., and Keirstead, H.S. (2008). Myelin pathogenesis and functional deficits following SCI are age-associated. Exp Neurol 213, 363–371.
pubmed: 18644369
pmcid: 3445440
doi: 10.1016/j.expneurol.2008.06.015
Slotkin, J.R., Pritchard, C.D., Luque, B., Ye, J., Layer, R.T., Lawrence, M. S., O’Shea, T.M., Roy, R.R., Zhong, H., Vollenweider, I., et al. (2017). Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 123, 63–76.
pubmed: 28167393
doi: 10.1016/j.biomaterials.2017.01.024
Teng, Y.D., Lavik, E.B., Qu, X., Park, K.I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E.Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99, 3024–3029.
pubmed: 11867737
pmcid: 122466
doi: 10.1073/pnas.052678899
Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T.R., and Ropper, A.E. (2016). First human implantation of a bioresorbable polymer scaffold for acute traumatic spinal cord injury. Neurosurgery 79, E305–E312.
pubmed: 27309344
doi: 10.1227/NEU.0000000000001283
von Leden, R.E., Khayrullina, G., Moritz, K.E., and Byrnes, K.R. (2017). Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middle-aged rodent model of spinal cord injury. J Neuroinflamm 14, 161.
doi: 10.1186/s12974-017-0933-3
Wang, N., Xiao, Z., Zhao, Y., Wang, B., Li, X., Li, J., and Dai, J. (2018). Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J Tissue Eng Regen Med 12.
Willison, A.G., Smith, S., Davies, B.M., Kotter, M.R.N., and Barnett, S.C. (2020). A scoping review of trials for cell-based therapies in human spinal cord injury. Spinal Cord 58, 844–856.
pubmed: 32249830
doi: 10.1038/s41393-020-0455-1
Xiao, Z., Tang, F., Tang, J., Yang, H., Zhao, Y., Chen, B., Han, S., Wang, N., Li, X., Cheng, S., et al. (2016). One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 59, 647–655.
pubmed: 27333785
doi: 10.1007/s11427-016-5080-z
Xiao, Z., Tang, F., Zhao, Y., Han, G., Yin, N., Li, X., Chen, B., Han, S., Jiang, X., Yun, C., et al. (2018). Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant 27, 907–915.
pubmed: 29871514
pmcid: 6050906
doi: 10.1177/0963689718766279
Xu, B., Zhao, Y., Xiao, Z., Wang, B., Liang, H., Li, X., Fang, Y., Han, S., Li, X., Fan, C., et al. (2017). A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthcare Mater 6, 1601279.
doi: 10.1002/adhm.201601279
Xue, X., Shu, M., Xiao, Z., Zhao, Y., Li, X., Zhang, H., Fan, Y., Wu, X., Chen, B., Xu, B., et al. (2021). Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci., doi: https://doi.org/10.1007/s11427-020-1901-4 .
Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7, 617–627.
pubmed: 16858390
pmcid: 2693386
doi: 10.1038/nrn1956
Zhao, Y., Tang, F., Xiao, Z., Han, G., Wang, N., Yin, N., Chen, B., Jiang, X., Yun, C., Han, W., et al. (2017a). Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant 26, 891–900.
pubmed: 28185615
pmcid: 5657723
doi: 10.3727/096368917X695038
Zhao, Y., Xiao, Z., Chen, B., and Dai, J. (2017b). The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 13, 63–70.
pubmed: 28598297
pmcid: 5655324
doi: 10.1080/15476278.2017.1329789