Survey and Evaluation of Neural 3D Shape Classification Approaches.


Journal

IEEE transactions on pattern analysis and machine intelligence
ISSN: 1939-3539
Titre abrégé: IEEE Trans Pattern Anal Mach Intell
Pays: United States
ID NLM: 9885960

Informations de publication

Date de publication:
11 2022
Historique:
pubmed: 19 8 2021
medline: 7 10 2022
entrez: 18 8 2021
Statut: ppublish

Résumé

Classification of 3D objects - the selection of a category in which each object belongs - is of great interest in the field of machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and representation of the 3D shape used as an input. To investigate the effectiveness of their approaches, we conduct an extensive survey of existing methods and identify common ideas by which we categorize them into a taxonomy. Second, we evaluate 11 selected classification networks on two 3D object datasets, extending the evaluation to a larger dataset on which most of the selected approaches have not been tested yet. For this, we provide a framework for converting shapes from common 3D mesh formats into formats native to each network, and for training and evaluating different classification approaches on this data. Despite being partially unable to reach the accuracies reported in the original papers, we compare the relative performance of the approaches as well as their performance when changing datasets as the only variable to provide valuable insights into performance on different kinds of data. We make our code available to simplify running training experiments with multiple neural networks with different prerequisites.

Identifiants

pubmed: 34406936
doi: 10.1109/TPAMI.2021.3102676
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8635-8656

Auteurs

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH