Genome-wide interaction study reveals epistatic interactions for beef lipid-related traits in Nellore cattle.


Journal

Animal genetics
ISSN: 1365-2052
Titre abrégé: Anim Genet
Pays: England
ID NLM: 8605704

Informations de publication

Date de publication:
Feb 2022
Historique:
accepted: 02 07 2021
pubmed: 19 8 2021
medline: 21 1 2022
entrez: 18 8 2021
Statut: ppublish

Résumé

Gene-gene interactions cause hidden genetic variation in natural populations and could be responsible for the lack of replication that is typically observed in complex traits studies. This study aimed to identify gene-gene interactions using the empirical Hilbert-Schmidt Independence Criterion method to test for epistasis in beef fatty acid profile traits of Nellore cattle. The dataset contained records from 963 bulls, genotyped using a 777 962k SNP chip. Meat samples of Longissimus muscle, were taken to measure fatty acid composition, which was quantified by gas chromatography. We chose to work with the sums of saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA), omega-3 (OM3), omega-6 (OM6), SFA:PUFA and OM3:OM6 fatty acid ratios. The SNPs in the interactions where

Identifiants

pubmed: 34407235
doi: 10.1111/age.13124
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

35-48

Informations de copyright

© 2021 Stichting International Foundation for Animal Genetics.

Références

Abo-Ismail M.K., Lansink N., Akanno E., Karisa B.K., Crowley J.J., Moore S.S., Bork E., Stothard P., Basarab J.A. & Plastow G.S. (2018) Development and validation of a small SNP panel for feed efficiency in beef cattle. Journal of Animal Science 96, 375-97.
Abo-Ismail M.K., Vander Voort G., Squires J.J., Swanson K.C., Mandell I.B., Liao X., Stothard P., Moore S., Plastow G. & Miller S.P. (2014) Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genetics 15, 14.
Afonso J., Coutinho L.L., Tizioto P.C. et al. (2019) Muscle transcriptome analysis reveals genes and metabolic pathways related to mineral concentration in Bos indicus. Scientific Reports 9, 1-11.
Anderson M.D.S. & Kunkel L.M. (1992) The molecular and biochemical basis of Duchenne muscular dystrophy. Trends in Biochemical Sciences 17, 289-92.
Andreozzi F., Procopio C., Greco A. et al. (2011) Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia 54, 1879-87.
Bartoň L., Marounek M., Kudrna V., Bureš D. & Zahrádková R. (2007) Growth performance and fatty acid profiles of intramuscular and subcutaneous fat from Limousin and Charolais heifers fed extruded linseed. Meat Science 76, 517-23.
Bas P., Berthelot V., Pottier E. & Normand J. (2007) Effect of level of linseed on fatty acid composition of muscles and adipose tissues of lambs with emphasis on trans fatty acids. Meat Science 77, 678-88.
Baumgard L.H., Hausman G.J. & Sanz Fernandez M.V. (2016) Insulin: pancreatic secretion and adipocyte regulation. Domestic Animal Endocrinology 54, 76-84. https://doi.org/10.1016/j.domaniend.2015.07.001.
Beibei J. & Putz B. (2018) episcan: scan pairwise epistasis.
Berton M.P., Fonseca L.F.S., Gimenez D.F.J. et al. (2016) Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genomics 17, 972.
Bligh E.G. & Dyer W.J. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911-7.
Bolormaa S., Pryce J.E., Zhang Y., Reverter A., Barendse W., Hayes B.J. & Goddard M.E. (2015) Non-additive genetic variation in growth, carcass and fertility traits of beef cattle. Genetics Selection Evolution 47, 26.
Bradley E.W., Carpio L.R., Newton A.C. & Westendorf J.J. (2015) Deletion of the PH-domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) increases fibroblast growth factor (Fgf) 18 expression and promotes chondrocyte proliferation. Journal of Biological Chemistry 290, 16272-80.
Buitenhuis B., Janss LLG, Poulsen N.A., Larsen L.B., Larsen M.K. & Sørensen P. (2014) Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC Genomics 15, 1112.
Cai Z., Dusza M., Guldbrandtsen B., Lund M.S. & Sahana G. (2020) Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle. Genetics Selection Evolution 52, 1-10. https://doi.org/10.1186/s12711-020-00538-6.
Cai Z., Guldbrandtsen B., Lund M.S. & Sahana G. (2018) Dissecting closely linked association signals in combination with the mammalian phenotype database can identify candidate genes in dairy cattle. BMC Genetics 20(15), 1-10. https://doi.org/10.1186/s12863-018-0620-0.
Camgoz A., Paszkowski-Rogacz M., Satpathy S., Wermke M., Hamann M.V., von Bonin M., Choudhary C., Knapp S. & Buchholz F. (2018) STK3 is a therapeutic target for a subset of acute myeloid leukemias. Oncotarget 9, 25458-73.
Cesar A.SM., Regitano L.CA., Mourão G.B. et al. (2014) Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics 15, 39.
Chiaia H.L.J., Peripoli E., Silva R.M.d.O. et al. (2017) Genomic prediction for beef fatty acid profile in Nellore cattle. Meat Science 128, 60-7.
Cheong H.S., Yoon D.H., Park B.L. et al. (2008) A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genetics 9, 33.
Culverhouse R., Suarez B.K., Lin J. & Reich T. (2002) A perspective on epistasis: limits of models displaying no main effect. American Journal of Human Genetics 70, 461-71.
Dalrymple B.P., Guo B., Zhou G.H. & Zhang W. (2014) Using muscle gene expression to estimate triacylglyceride deposition, and relative contributions of fatty acid synthesis and fatty acid import in intramuscular fat in cattle. Animal Production Science 54, 1436.
de Lemos MVA, Piatto Berton M., Ferreira de Camargo G.M. et al. (2017) Copy number variation regions in Nellore cattle: evidences of environment adaptation. Livestock Science 207, 51-8.
Lima A.O., Oliveira P.S., Tizioto P. et al. (2016) Association analyses pointed the TIPARP as a potential candidate gene influencing residual feed intake variation in Nelore cattle. International Meeting of Advances in Animal Science. 1-2016.
De Souza Fonseca P.A., Id-Lahoucine S., Reverter A. et al. (2018) Combining multi-OMICs information to identify key-regulator genes for pleiotropic effect on fertility and production traits in beef cattle. PLoS One 13, e0205295.
Ding R., Yang M., Quan J. et al. (2019) Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Frontiers in Genetics 10, 619-629.
Dos Santos Silva D.B., Fonseca L.F.S., Pinheiro D.G., Muniz M.M.M., Magalhães A.F.B., Baldi F., Ferro J.A., Chardulo L.A.L. & De Albuquerque L.G. (2019) Prediction of hub genes associated with intramuscular fat content in Nelore cattle. BMC Genomics 20, 520.
Dunner S., Sevane N., Garcia D., Levéziel H., Williams J.L., Mangin B. & Valentini A. (2013) Genes involved in muscle lipid composition in 15 European Bos taurus breeds. Animal Genetics 44, 493-501. https://doi.org/10.1111/age.12044.
Edinger A.L., Cinalli R.M. & Thompson C.B. (2003) Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Developmental Cell 5, 571-82.
El Hou A., Philippe R., Rocha D. & Blanquet V. (2019) Fine QTL mapping for meat quality traits in French Charolaise breed using HD SNP data. In: Proceedings of the New Challenges in Data Sciences: Acts of the Second Conference of the Moroccan Classification Society (SMC ’19), pp. 1-5. Association for Computing Machinery, New York, NY. https://doi.org/10.1145/3314074.3314101.
Ferguson L.R. (2010) Meat and cancer. Meat Science 84, 308-13.
Folch J., Lees M. & Sloane Stanley G.H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497-509.
Gao T., Furnari F. & Newton A.C. (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Molecular Cell 18, 13-24.
Gilbert H., Billon Y., Brossard L. et al. (2017) Review: divergent selection for residual feed intake in the growing pig. Animal 11, 1427-39.
Goettig P. (2016) Effects of glycosylation on the enzymatic activity and mechanisms of proteases. International Journal of Molecular Sciences 17, 1969.
Goff J.P. (2018) Invited review: mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science 101, 2763-813.
Goudey B., Rawlinson D., Wang Q., Shi F., Ferra H., Campbell R.M., Stern L., Inouye M.T., Ong C.S. & Kowalczyk A. (2013) GWIS-model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. BMC Genomics 14(Suppl 3), 1-18.
Grab D.J., Webster P., Ito S., Fish W.R., Verjee Y. & Lonsdale-Eccles J.D. (1987) Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes. Journal of Cell Biology 105, 737-46.
Gregoire F.M., Smas C.M. & Sul H.S. (1998) Understanding adipocyte differentiation. Physiological Reviews 78, 783-809.
Gretton A., Bousquet O., Smola A. & Scḧlkopf B. (2005) Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain, S. & Tomita, E. (eds.), Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 63-77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564089_7.
Haider S., Ballester B., Smedley D., Zhang J., Rice P. & Kasprzyk A. (2009) BioMart central portal-unified access to biological data - PubMed. Nucleic Acids Research 37, 23-7.
Hardie D.G. (2012) Organismal carbohydrate and lipid homeostasis. Cold Spring Harbor Perspectives in Biology 4, a006031.
Hamill R.M., McBryan J., McGee C., Mullen A.M., Sweeney T., Talbot A., Cairns M.T. & Davey G.C. (2012) Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork. Meat Science 92, 440-50.
Hartati H., Utsunomiya Y.T., Sonstegard T.S., Garcia J.F., Jakaria J. & Muladno M. (2015) Evidence of Bos javanicus × Bos indicus hybridization and major QTLs for birth weight in Indonesian Peranakan Ongole cattle. BMC Genetics 16, 1-10. https://doi.org/10.1186/s12863-015-0229-5.
Hoeschele I. & VanRaden P.M. (1991) Rapid inversion of dominance relationship matrices for noninbred populations by including sire by dam subclass effects. Journal of Dairy Science 74, 557-69.
Howard J.T., Jiao S., Tiezzi F., Huang Y., Gray K.A. & Maltecca C. (2015) Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars. BMC Genetics 16, 1-10. https://doi.org/10.1186/s12863-015-0218-8.
Huang D.W., Sherman B.T. & Lempicki R.A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature 4, 44-57.
Huang D.W., Sherman B.T., Tan Q., Collins J.R., Alvord W.G., Roayaei J., Stephens R., Baseler M.W., Lane H.C. & Lempicki R.A. (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biology 8, R183.
Huang W., Richards S., Carbone M.A. et al. (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proceedings of the National Academy of Sciences of the United States of America 109, 15553-9.
Inoue K., Kobayashi M., Shoji N. & Kato K. (2011) Genetic parameters for fatty acid composition and feed efficiency traits in Japanese Black cattle. Animal 5, 987-94.
Kam-Thong T., Czamara D., Tsuda K. et al. (2011) EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. European Journal of Human Genetics 19, 465-71.
Kelly M.J., Tume R.K., Newman S. & Thompson J.M. (2013) Genetic variation in fatty acid composition of subcutaneous fat in cattle. Animal Production Science 53, 129.
Kim H.Y., Caetano-Anolles K., Seo M., Kwon Y., Cho S., Seo K. & Kim H. (2015) Prediction of genes related to positive selection using whole-genome resequencing in three commercial pig breeds. Genomics & Informatics 13, 137.
Kim J.-J., Farnir F., Savell J. & Taylor J.F. (2003) Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle1. Journal of Animal Science 81, 1933-42.
Kim J.H., Ovilo C., Park E.W., Fernndez A., Lee J.H., Jeon J.T. & Lee J.G. (2008) Minimizing a QTL region for intramuscular fat content by characterizing the porcine phosphodiesterase 4B (PDE4B) gene. Journal of Biochemistry and Molecular Biology 41, 466-71.
Koo Y.D., Choi J.W., Kim M. et al. (2015) SUMO-specific protease 2 (SENP2) is an important regulator of fatty acid metabolism in skeletal muscle. Diabetes 64, 2420-31.
Kramer J.K., Fellner V., Dugan M.E., Sauer F.D., Mossoba M.M. & Yurawecz M.P. (1997) Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 32, 1219-28.
Kramer L.M., Ghaffar MAA, Koltes J.E. et al. (2016) Epistatic interactions associated with fatty acid concentrations of beef from angus sired beef cattle. BMC Genomics 17, 891.
Lee H.-J., Jang M., Kim H. et al. (2013) Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific adipogenesis in cattle. PLoS One 8, e66267.
Lee H., Park H., Kim W., Yoon D. & Seo S. (2014) Comparison of metabolic network between muscle and intramuscular adipose tissues in Hanwoo beef cattle using a systems biology approach. International Journal of Genomics 2014, 1-6.
Lee K.T., Byun M.J., Kang K.S. et al. (2011) Neuronal genes for subcutaneous fat thickness in human and pig are identified by local genomic sequencing and combined SNP association study. PLoS One 6, e16356. https://doi.org/10.1371/journal.pone.0016356.
Lee S.H., Park E.W., Cho Y.M. et al. (2007) Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of Hanwoo steers. Journal of Biochemistry and Molecular Biology 40, 757-64.
Lemos M.V.A., Chiaia H.L.J., Berton M.P. et al. (2016a) Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics 17, 213.
Li C., Sun D., Zhang S., Wang S., Wu X., Zhang Q., Liu L., Li Y. & Qiao L. (2014) Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS One 9, e96186.
Li X., Yang H., Liu J., Schmidt M.D. & Gao T. (2011) Scribble-mediated membrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBO Reports 12, 818-24.
Liao W., Nguyen MTA, Yoshizaki T., Favelyukis S., Patsouris D., Imamura T., Verma I.M. & Olefsky J.M. (2007) Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. American Journal of Physiology-Endocrinology and Metabolism 293, E219-27.
Liu K. & Czaja M.J. (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death and Differentiation 20, 3-11.
Lourenço M., Van Ranst G., Vlaeminck B., De Smet S. & Fievez V. (2008) Influence of different dietary forages on the fatty acid composition of rumen digesta as well as ruminant meat and milk. Animal Feed Science and Technology 145, 418-37.
Mahgoub O., Khan A.J., Al-Maqbaly R.S., Al-Sabahi J.N., Annamalai K. & Al-Sakry N.M. (2002) Fatty acid composition of muscle and fat tissues of Omani Jebel Akhdar goats of different sexes and weights. Meat Science 61, 381-7.
McCarthy N.S., Vangjeli C., Cavalleri G.L. et al. (2014) Two further blood pressure loci identified in ion channel genes with a genecentric approach. Circulation: Cardiovascular Genetics 7, 873-9.
McClure M.C., Morsci N.S., Schnabel R.D. et al. (2010) A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Animal Genetics 41, 597-607.
Miglior F., Fleming A., Malchiodi F., Brito L.F., Martin P. & Baes C.F. (2017) A 100-year review: identification and genetic selection of economically important traits in dairy cattle. Journal of Dairy Science 100, 10251-71.
Miller M.F., Carr M.A., Ramsey C.B., Crockett K.L. & Hoover L.C. (2001) Consumer thresholds for establishing the value of beef tenderness. Journal of Animal Science 79, 3062-8.
Misztal I., Tsuruta S., Strabel T., Druet T. & Lee D. (2002) BLUPF90 and related programs (BGF90). In: Proc. 7th World Congr. Genet. Appl. to Livest. Prod. p. 2.
Morota G., Boddhireddy P., Vukasinovic N., Gianola D. & DeNise S. (2014) Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits. Frontiers in Genetics 5. https://doi.org/10.3389/fgene.2014.00056.
Mota L.F.M., Lopes F.B., Fernandes Júnior G.A., Rosa G.J.M., Magalhães A.F.B., Carvalheiro R. & Albuquerque L.G. (2020) Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers. Scientific Reports 10, 1-13.
Murakami A., Nagao K., Juni N., Hara Y. & Umeda M. (2017) An N-terminal di-proline motif is essential for fatty acid-dependent degradation of Δ9-desaturase in Drosophila. Journal of Biological Chemistry 292, 19976-86.
Nisoli E., Clementi E., Tonello C., Sciorati C., Briscini L. & Carruba M.O. (1998) Effects of nitric oxide on proliferation and differentiation of rat brown adipocytes in primary cultures. British Journal of Pharmacology 125, 888-94.
Olson M.F. (2003) GTPase signalling: new functions for diaphanous-related formins. Current Biology 13, R360-2.
Palucci V., Schaeffer L.R., Miglior F. & Osborne V. (2007) Non-additive genetic effects for fertility traits in Canadian Holstein cattle (Open Access publication). Genetics Selection Evolution 39, 181.
Patterson S.J., Han J.M., Garcia R., Assi K., Gao T., O’Neill A., Newton A.C. & Levings M.K. (2011) Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. The Journal of Immunology 186, 5533-7.
Pereira A.G.T., Utsunomiya Y.T., Milanesi M. et al. (2016) Pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle are modulators of growth. PLoS One 11, e0158165.
Puig-Oliveras A., Ballester M., Corominas J., Revilla M., Estellé J., Fernández A.I., Ramayo-Caldas Y. & Folch J.M. (2014a) A co-association network analysis of the genetic determination of pig conformation, growth and fatness. PLoS One 9, e114862.
Puig-Oliveras A., Ramayo-Caldas Y., Corominas J., Estellé J., Pérez-Montarelo D., Hudson N.J., Casellas J., Folch J.M. & Ballester M. (2014b) Differences in muscle transcriptome among pigs phenotypically extreme for fatty acid composition. PLoS One 9, e99720.
Qu L., Pan C., He S.M., Lang B., Gao G.D., Wang X.L. & Wang Y. (2019) The ras superfamily of small gtpases in non-neoplastic cerebral diseases. Frontiers in Molecular Neuroscience 12, 121-131. https://doi.org/10.3389/fnmol.2019.00121.
R Development Core Team (2019) R: The R Project for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Regnell S.E., Hessner M.J., Jia S., Åkesson L., Stenlund H., Moritz T., La Torre D. & Lernmark Å. (2017) Longitudinal analysis of hepatic transcriptome and serum metabolome demonstrates altered lipid metabolism following the onset of hyperglycemia in spontaneously diabetic biobreeding rats. PLoS One 12, e0171372.
Saatchi M., Garrick D.J., Tait R.G., Mayes M.S., Drewnoski M., Schoonmaker J., Diaz C., Beitz D.C. & Reecy J.M. (2013) Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattle. BMC Genomics 14, 730.
Sassone-Corsi P. (2012) The cyclic AMP pathway. Cold Spring Harbor Perspectives in Biology 4, a011148.
Schläpfer J., Stahlberger-Saitbekova N., Comincini S., Gaillard C., Hills D., Meyer R.K., Williams J.L., Womack J.E., Zurbriggen A. & Dolf G. (2002) A higher resolution radiation hybrid map of bovine chromosome 13. Genetics Selection Evolution 34, 255-67.
Scollan N., Hocquette J.F., Nuernberg K., Dannenberger D., Richardson I. & Moloney A. (2006) Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science 74, 17-33.
Sentandreu M.A., Coulis G. & Ouali A. (2002) Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science & Technology 13, 400-21.
Shackelford S.D., Wheeler T.L., Meade M.K., Reagan J.O., Byrnes B.L. & Koohmaraie M. (2001) Consumer impressions of tender select beef. Journal of Animal Science 79, 2605-14.
Shi L., Lv X., Liu L., Yang Y., Ma Z., Han B. & Sun D. (2019) A post-GWAS confirming effects of PRKG1 gene on milk fatty acids in a Chinese Holstein dairy population. BMC Genetics 20, 53.
Stedman H., Browning K., Oliver N., Oronzi-Scott M., Fischbeck K., Sarkar S., Sylvester J., Schmickel R. & Wang K. (1988) Nebulin cDNAs detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics 2, 1-7.
Taye M., Kim J., Yoon S.H. et al. (2017) Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genetics 18, 11.
Thorsteinsdottir S., Deries M., Cachaço A.S. & Bajanca F. (2011) The extracellular matrix dimension of skeletal muscle development. Developmental Biology 354, 191-207.
Toppin P.J., Chandy T.T., Ghanekar A., Kraeva N., Beattie W.S. & Riazi S. (2010) A report of fulminant malignant hyperthermia in a patient with a novel mutation of the CACNA1S gene. Canadian Journal of Anesthesia 57, 689-93.
Valsta L.M., Tapanainen H. & Männistö S. (2005) Meat fats in nutrition. Meat Science 70, 525-30.
Van Den Steen P., Rudd P.M., Dwek R.A. & Opdenakker G. (1998) Concepts and principles of O-linked glycosylation. Critical Reviews in Biochemistry and Molecular Biology 33, 151-208.
Van Itallie C.M. & Anderson J.M. (2014) Architecture of tight junctions and principles of molecular composition. Seminars in Cell & Developmental Biology 36, 157-65.
Varona L., Legarra A., Toro M.A. & Vitezica Z.G. (2018) Non-additive effects in genomic selection. Frontiers in Genetics 9, 78.
Wang X., Elston R.C. & Zhu X. (2011) The meaning of interaction. Human Heredity 70, 269-77.
Watkins P.A., Maiguel D., Jia Z. & Pevsner J. (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. Journal of Lipid Research 48, 2736-50.
Webb E.C. & O’Neill H.A. (2008) The animal fat paradox and meat quality. Meat Science 80, 28-36.
Wood J.D., Enser M., Fisher A.V., Nute G.R., Sheard P.R., Richardson R.I., Hughes S.I. & Whittington F.M. (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Science. 78, 343-58.
Xu J., Gaddis N.C., Bartz T.M. et al. (2019) Omega-3 fatty acids and genome-wide interaction analyses reveal DPP10-pulmonary function association. American Journal of Respiratory and Critical Care Medicine 199, 631-42.
Yao Y.F., Lyu S., Wang X. et al. (2020) The combination between NCSTN gene copy number variation and growth traits in Chinese cattle. Animal Biotechnology 25, 1-5. https://doi.org/10.1080/10495398.2020.1741382.
Zhang H.M., Xia H.L., Jiang H.R., Mao Y.J., Qu K.X., Huang B.Z., Gong Y.C., Yang Z.P. & Ryan A.K. (2018) Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition. Genome 61, 549-58.
Zhao C., Tian F., Yu Y. et al. (2012) Muscle transcriptomic analyses in angus cattle with divergent tenderness. Molecular Biology Reports 39, 4185-93.
Zheng J.S., Arnett D.K., Parnell L.D. et al. (2013) Polyunsaturated fatty acids modulate the association between PIK3CA-KCNMB3 genetic variants and insulin resistance. PLoS One 8, e67394.

Auteurs

S T Amorim (ST)

Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil.

N B Stafuzza (NB)

Instituto de Zootecnia - Centro de Pesquisa em Bovinos de Corte, Rodovia Carlos Tonanni, Km94, Sertãozinho, 14174-000, Brazil.

S Kluska (S)

Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil.

E Peripolli (E)

Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil.

A S C Pereira (ASC)

Faculdade de Zootecnia e Engenharia de Alimentos, Núcleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, CEP 13635-900, Brazil.

L F Muller da Silveira (LF)

Faculdade de Zootecnia e Engenharia de Alimentos, Núcleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, CEP 13635-900, Brazil.

L G de Albuquerque (LG)

Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil.

F Baldi (F)

Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH