Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein.
Animals
Apolipoproteins M
/ metabolism
Atherosclerosis
/ genetics
Biological Transport
Cattle
Cells, Cultured
Disease Models, Animal
Endothelial Cells
/ metabolism
Female
Humans
Lipoproteins, HDL
/ metabolism
Male
Mice, Inbred C57BL
Mice, Knockout, ApoE
Permeability
Plaque, Atherosclerotic
Scavenger Receptors, Class B
/ genetics
Sphingosine-1-Phosphate Receptors
/ genetics
apolipoprotein
endothelium
lipoprotein
mice
sphingosine-1-phosphate
Journal
Arteriosclerosis, thrombosis, and vascular biology
ISSN: 1524-4636
Titre abrégé: Arterioscler Thromb Vasc Biol
Pays: United States
ID NLM: 9505803
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
pubmed:
20
8
2021
medline:
23
11
2021
entrez:
19
8
2021
Statut:
ppublish
Résumé
Objective: ApoM enriches S1P (sphingosine-1-phosphate) within HDL (high-density lipoproteins) and facilitates the activation of the S1P1 (S1P receptor type 1) by S1P, thereby preserving endothelial barrier function. Many protective functions exerted by HDL in extravascular tissues raise the question of how S1P regulates transendothelial HDL transport.
Approach and Results: HDL were isolated from plasma of wild-type mice, Apom knockout mice, human apoM transgenic mice or humans and radioiodinated to trace its binding, association, and transport by bovine or human aortic endothelial cells. We also compared the transport of fluorescently-labeled HDL or Evans Blue, which labels albumin, from the tail vein into the peritoneal cavity of apoE-haploinsufficient mice with (apoE-haploinsufficient mice with endothelium-specific knockin of S1P1) or without (control mice, ie, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1) endothelium-specific knockin of S1P1. The binding, association, and transport of HDL from Apom knockout mice and human apoM-depleted HDL by bovine aortic endothelial cells was significantly lower than that of HDL from wild-type mice and human apoM-containing HDL, respectively. The binding, uptake, and transport of 125I-HDL by human aortic endothelial cells was increased by an S1P1 agonist but decreased by an S1P1 inhibitor. Silencing of SR-BI (scavenger receptor BI) abrogated the stimulation of 125I-HDL transport by the S1P1 agonist. Compared with control mice, that is, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1, apoE-haploinsufficient mice with endothelium-specific knockin of S1P1 showed decreased transport of Evans Blue but increased transport of HDL from blood into the peritoneal cavity and SR-BI expression in the aortal endothelium.
Conclusions: ApoM and S1P1 promote transendothelial HDL transport. Their opposite effect on transendothelial transport of albumin and HDL indicates that HDL passes endothelial barriers by specific mechanisms rather than passive filtration.
Identifiants
pubmed: 34407633
doi: 10.1161/ATVBAHA.121.316725
pmc: PMC8458249
mid: NIHMS1731261
doi:
Substances chimiques
APOM protein, human
0
ApoM protein, mouse
0
Apolipoproteins M
0
Lipoproteins, HDL
0
S1PR1 protein, human
0
S1pr1 protein, mouse
0
SCARB1 protein, human
0
Scarb1 protein, mouse
0
Scavenger Receptors, Class B
0
Sphingosine-1-Phosphate Receptors
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e468-e479Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL119962
Pays : United States
Références
Arthritis Rheumatol. 2018 Nov;70(11):1879-1889
pubmed: 29781582
Science. 2019 Oct 18;366(6463):
pubmed: 31624181
Sci Signal. 2015 Aug 11;8(389):ra79
pubmed: 26268607
ASAIO J. 2014 Sep-Oct;60(5):576-81
pubmed: 25010914
Atherosclerosis. 2020 Dec;315:111-125
pubmed: 33032832
Biochim Biophys Acta Gen Subj. 2019 Jun;1863(6):1079-1087
pubmed: 30954526
JCI Insight. 2020 Jan 16;5(1):
pubmed: 31830004
Cell Metab. 2017 Feb 7;25(2):248-261
pubmed: 27916529
Clin Res Cardiol. 2017 Sep;106(9):663-675
pubmed: 28342064
Sci Rep. 2017 Nov 8;7(1):14983
pubmed: 29118354
J Lipid Res. 2010 Mar;51(3):514-24
pubmed: 19767535
Circ Res. 2009 May 22;104(10):1142-50
pubmed: 19372466
J Lipid Res. 2014 Aug;55(8):1730-7
pubmed: 24950692
Front Cardiovasc Med. 2019 Apr 12;6:46
pubmed: 31032262
Arterioscler Thromb Vasc Biol. 2017 May;37(5):794-803
pubmed: 28360088
Arterioscler Thromb Vasc Biol. 2013 Jul;33(7):1505-12
pubmed: 23640484
Circ J. 2013;77(10):2432-48
pubmed: 24067275
Cardiovasc Res. 2015 Nov 1;108(2):268-77
pubmed: 26334034
JCI Insight. 2019 Jun 6;4(11):
pubmed: 31167970
Vascul Pharmacol. 2012 Aug 19;57(1):56-64
pubmed: 22459073
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9613-8
pubmed: 21606363
Biochim Biophys Acta. 2006 Feb;1761(2):186-94
pubmed: 16546443
Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10664-9
pubmed: 12963813
Elife. 2019 Nov 25;8:
pubmed: 31763978
Cells. 2021 Apr 28;10(5):
pubmed: 33924941
Arterioscler Thromb Vasc Biol. 2012 Jan;32(1):131-9
pubmed: 21979433
Arterioscler Thromb Vasc Biol. 2017 Jan;37(1):118-129
pubmed: 27879252
Biochim Biophys Acta. 2016 Feb;1861(2):98-107
pubmed: 26577406
J Biol Chem. 2015 Mar 20;290(12):7861-70
pubmed: 25627684
Circ Res. 2006 Nov 10;99(10):1060-6
pubmed: 17053191
J Clin Invest. 1994 Sep;94(3):937-45
pubmed: 8083379
Nat Med. 2005 Apr;11(4):418-22
pubmed: 15793583
Atherosclerosis. 1994 Nov;111(1):25-37
pubmed: 7840811
Circ Res. 2020 Apr 24;126(9):1297-1319
pubmed: 32324497
J Biol Chem. 2014 Jan 31;289(5):2801-14
pubmed: 24318881
Dev Dyn. 2006 Dec;235(12):3413-22
pubmed: 17072878
Cell Metab. 2013 May 7;17(5):671-84
pubmed: 23663736
FASEB J. 2016 Jun;30(6):2351-9
pubmed: 26956418
Atherosclerosis. 2011 Dec;219(2):855-63
pubmed: 21944699
J Lipid Res. 2006 Aug;47(8):1833-43
pubmed: 16682745
Thromb Haemost. 2018 Aug;118(8):1470-1480
pubmed: 30060257
Nature. 2019 May;569(7757):565-569
pubmed: 31019307
Arterioscler Thromb Vasc Biol. 2013 Dec;33(12):2699-706
pubmed: 24115033