Ghost hyperbolic surface polaritons in bulk anisotropic crystals.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
08 2021
Historique:
received: 16 02 2021
accepted: 22 06 2021
entrez: 19 8 2021
pubmed: 20 8 2021
medline: 20 8 2021
Statut: ppublish

Résumé

Polaritons in anisotropic materials result in exotic optical features, which can provide opportunities to control light at the nanoscale

Identifiants

pubmed: 34408329
doi: 10.1038/s41586-021-03755-1
pii: 10.1038/s41586-021-03755-1
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

362-366

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
doi: 10.1126/science.aag1992
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).
doi: 10.1038/nmat4792
Hu, G., Shen, J., Qiu, C.-W., Alù, A. & Dai, S. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater. 8, 1901393 (2020).
doi: 10.1002/adom.201901393
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).
doi: 10.1126/science.1246833
Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).
doi: 10.1038/ncomms6221
Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).
doi: 10.1126/science.aaq1704
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).
doi: 10.1038/s41586-018-0618-9
Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).
doi: 10.1126/sciadv.aav8690
Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).
doi: 10.1038/s41563-020-0665-0
Sternbach, A. J. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).
doi: 10.1126/science.abe9163
Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).
doi: 10.1038/ncomms15624
Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).
doi: 10.1038/nmat5047
Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).
doi: 10.1038/s41467-020-17425-9
Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).
doi: 10.1038/ncomms8507
Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).
doi: 10.1038/ncomms7963
Tielrooij, K.-J. et al. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).
doi: 10.1038/s41565-017-0008-8
Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).
doi: 10.1038/lsa.2017.172
Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).
doi: 10.1038/s41566-020-00725-3
Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).
doi: 10.1038/s41467-020-18544-z
Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO
doi: 10.1038/s41586-020-2359-9
Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228–235 (2017).
doi: 10.1021/acs.nanolett.6b03920
Dai, S. et al. Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride. Adv. Mater. 30, 1706358 (2018).
doi: 10.1002/adma.201706358
D’yakonov, M. New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988).
Narimanov, E. Ghost resonance in anisotropic materials: negative refractive index and evanescent field enhancement in lossless media. Adv. Photonics 1, 056003 (2019).
Waseer, W. I., Naqvi, Q. A. & Mughal, M. J. Non-uniform plane waves (ghost waves) in general anisotropic medium. Opt. Commun. 453, 124334 (2019).
doi: 10.1016/j.optcom.2019.124334
Narimanov, E. Dyakonov waves in biaxial anisotropic crystals. Phys. Rev. A (Coll. Park) 98, 013818 (2018).
doi: 10.1103/PhysRevA.98.013818
Narimanov, E. Electromagnenic Ghost Waves. in Conference on Lasers and Electro-Optics JTu2A.144 (Optical Society of America, 2018).
Walker, D., Glytsis, E. & Gaylord, T. Surface mode at isotropic–uniaxial and isotropic–biaxial interfaces. J. Opt. Soc. Am. A 15, 248–260 (1998).
doi: 10.1364/JOSAA.15.000248
Kuś, M., Haake, F. & Delande, D. Prebifurcation periodic ghost orbits in semiclassical quantization. Phys. Rev. Lett. 71, 2167–2171 (1993).
doi: 10.1103/PhysRevLett.71.2167
Zhou, S., Zhang, Q., Fu, S. F. & Wang, X. Z. Ghost surface phononic polaritons in ionic-crystal metamaterial. J. Opt. Soc. Am. B 35, 2764–2769 (2018).
doi: 10.1364/JOSAB.35.002764
Frech, R. & Nichols, H. Infrared reflectivity of calcite: Oblique phonons. Phys. Rev. B 17, 2775–2779 (1978).
doi: 10.1103/PhysRevB.17.2775
Hellwege, K. H., Lesch, W., Plihal, M. & Schaack, G. Zwei-phononen-absorptionsspektren und dispersion der schwingungszweige in kristallen der kalkspatstruktur. Z. Physik 232, 61–86 (1970).
doi: 10.1007/BF01394946
Breslin, V. M., Ratchford, D. C., Giles, A. J., Dunkelberger, A. D. & Owrutsky, J. C. Hyperbolic phonon polariton resonances in calcite nanopillars. Opt. Express 29, 11760–11772 (2021).
doi: 10.1364/OE.417405
Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).
doi: 10.1063/1.2032595
Huber, A. J., Ocelic, N. & Hillenbrand, R. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy. J. Microsc. 229, 389–395 (2008).
doi: 10.1111/j.1365-2818.2008.01917.x
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature (in the press).
Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).
doi: 10.1021/acs.nanolett.9b05319
Schuller, E., Borstel, G. & Falge, H. J. Surface phonon‐polaritons on general crystal cuts of α‐quartz observed by attenuated total reflection. Phys. Status Solidi B 69, 467–476 (1975).
doi: 10.1002/pssb.2220690218
Lee, S. C., Ng, S. S., Hassan, H. A., Hassan, Z. & Dumelow, T. Surface phonon polariton responses of hexagonal sapphire crystals with non-polar and semi-polar crystallographic planes. Opt. Lett. 39, 5467–5470 (2014).
doi: 10.1364/OL.39.005467
Lane, M. D. Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite. J. Geophys. Res. Planets 104, 14099–14108 (1999).
doi: 10.1029/1999JE900025
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).
doi: 10.1063/1.2348781

Auteurs

Weiliang Ma (W)

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.

Guangwei Hu (G)

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA.

Debo Hu (D)

CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.

Runkun Chen (R)

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.

Tian Sun (T)

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.

Xinliang Zhang (X)

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China. xlzhang@mail.hust.edu.cn.

Qing Dai (Q)

CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China. daiq@nanoctr.cn.

Ying Zeng (Y)

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.

Andrea Alù (A)

Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA. aalu@gc.cuny.edu.
Physics Program, Graduate Center, City University of New York, New York, NY, USA. aalu@gc.cuny.edu.

Cheng-Wei Qiu (CW)

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore. chengwei.qiu@nus.edu.sg.

Peining Li (P)

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China. lipn@hust.edu.cn.

Classifications MeSH