The Use of Artificial Intelligence in Assessing Affective States in Livestock.
affective states
animal emotions
animal welfare
animal-based measures
artificial intelligence
emotion modeling
sensors
Journal
Frontiers in veterinary science
ISSN: 2297-1769
Titre abrégé: Front Vet Sci
Pays: Switzerland
ID NLM: 101666658
Informations de publication
Date de publication:
2021
2021
Historique:
received:
26
05
2021
accepted:
09
07
2021
entrez:
19
8
2021
pubmed:
20
8
2021
medline:
20
8
2021
Statut:
epublish
Résumé
In order to promote the welfare of farm animals, there is a need to be able to recognize, register and monitor their affective states. Numerous studies show that just like humans, non-human animals are able to feel pain, fear and joy amongst other emotions, too. While behaviorally testing individual animals to identify positive or negative states is a time and labor consuming task to complete, artificial intelligence and machine learning open up a whole new field of science to automatize emotion recognition in production animals. By using sensors and monitoring indirect measures of changes in affective states, self-learning computational mechanisms will allow an effective categorization of emotions and consequently can help farmers to respond accordingly. Not only will this possibility be an efficient method to improve animal welfare, but early detection of stress and fear can also improve productivity and reduce the need for veterinary assistance on the farm. Whereas affective computing in human research has received increasing attention, the knowledge gained on human emotions is yet to be applied to non-human animals. Therefore, a multidisciplinary approach should be taken to combine fields such as affective computing, bioengineering and applied ethology in order to address the current theoretical and practical obstacles that are yet to be overcome.
Identifiants
pubmed: 34409091
doi: 10.3389/fvets.2021.715261
pmc: PMC8364945
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
715261Informations de copyright
Copyright © 2021 Neethirajan.
Déclaration de conflit d'intérêts
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Biol Philos. 2019;34(5):45
pubmed: 31485092
J R Soc Interface. 2020 Jun;17(167):20200086
pubmed: 32517633
Animal. 2015 Nov;9(11):1859-65
pubmed: 26189971
Animals (Basel). 2021 Feb 08;11(2):
pubmed: 33567488
Brain Sci. 2020 Feb 06;10(2):
pubmed: 32041316
Sci Rep. 2018 Oct 2;8(1):14680
pubmed: 30279565
Sensors (Basel). 2021 Jan 14;21(2):
pubmed: 33466737
Neurosci Biobehav Rev. 2020 Nov;118:3-17
pubmed: 32682742
R Soc Open Sci. 2020 Dec 23;7(12):201886
pubmed: 33489298
Domest Anim Endocrinol. 2020 Jan;70:106384
pubmed: 31569032
PLoS One. 2018 May 2;13(5):e0195674
pubmed: 29718937
PLoS One. 2014 Jul 23;9(7):e94597
pubmed: 25054800
J Dairy Sci. 2021 Jan;104(1):826-838
pubmed: 33131811
PLoS One. 2018 Jul 11;13(7):e0197898
pubmed: 29995876
Front Biosci (Elite Ed). 2012 Jan 01;4:1759-67
pubmed: 22201991
Conscious Cogn. 2005 Mar;14(1):30-80
pubmed: 15766890
Physiol Behav. 2015 Aug 1;147:1-6
pubmed: 25862928
Sci Am. 2013 Jul;309(1):62-7
pubmed: 23821866
Animals (Basel). 2019 Jul 24;9(8):
pubmed: 31344842
Meat Sci. 2008 Sep;80(1):12-9
pubmed: 22063165
Foodborne Pathog Dis. 2009 Sep;6(7):767-76
pubmed: 19737056
Biosensors (Basel). 2020 Apr 16;10(4):
pubmed: 32316280
Psychoneuroendocrinology. 2020 May;115:104636
pubmed: 32160578
Animals (Basel). 2019 Apr 25;9(4):
pubmed: 31027279
Sensors (Basel). 2018 Sep 01;18(9):
pubmed: 30200501
J Pers. 2018 Feb;86(1):12-22
pubmed: 28236301
Neuropsychopharmacology. 2021 Jan;46(1):250-251
pubmed: 32901118
Physiol Behav. 2007 Oct 22;92(3):293-316
pubmed: 17320122
Physiol Behav. 2007 Oct 22;92(3):340-74
pubmed: 18046784
Physiol Behav. 2013 Jan 17;109:42-50
pubmed: 23159725
Equine Vet J. 2011 Jul;43(4):487-93
pubmed: 21496072
J Endocrinol. 2016 Jul;230(1):105-23
pubmed: 27390301
Nature. 2004 Jan 22;427(6972):312
pubmed: 14737158
Behav Processes. 2020 Jul;176:104138
pubmed: 32413474
Physiol Behav. 2013 Jul 2;119:195-200
pubmed: 23816981
Physiol Behav. 2015 Jan;138:340-4
pubmed: 25446197
PLoS One. 2016 Oct 12;11(10):e0164017
pubmed: 27732647
Poult Sci. 2006 Nov;85(11):1867-74
pubmed: 17032815
Animals (Basel). 2019 Aug 07;9(8):
pubmed: 31394802
Sci Rep. 2020 Dec 8;10(1):21409
pubmed: 33293559
Vet J. 2015 Oct;206(1):15-21
pubmed: 26160470
Behav Processes. 2002 Nov;60(2):165-180
pubmed: 12426068
Proc Biol Sci. 2010 Oct 7;277(1696):2895-904
pubmed: 20685706
Trends Ecol Evol. 2015 Jan;30(1):50-60
pubmed: 25498413
Sensors (Basel). 2021 Feb 10;21(4):
pubmed: 33578714
Behav Processes. 2016 Nov;132:49-56
pubmed: 27693533
Annu Rev Psychol. 2009;60:1-25
pubmed: 18729725
Animal. 2013 Dec;7(12):2044-53
pubmed: 24067493
Sci Rep. 2019 Feb 14;9(1):2062
pubmed: 30765788