Current approaches to flexible loop modeling.
Conformational sampling
Energy landscapes
Loop modeling
Protein flexibility
Structure prediction
Journal
Current research in structural biology
ISSN: 2665-928X
Titre abrégé: Curr Res Struct Biol
Pays: Netherlands
ID NLM: 101767537
Informations de publication
Date de publication:
2021
2021
Historique:
received:
30
09
2020
revised:
30
06
2021
accepted:
25
07
2021
entrez:
19
8
2021
pubmed:
20
8
2021
medline:
20
8
2021
Statut:
epublish
Résumé
Loops are key components of protein structures, involved in many biological functions. Due to their conformational variability, the structural investigation of loops is a difficult topic, requiring a combination of experimental and computational methods. This paper provides a brief overview of current computational approaches to flexible loop modeling, and presents the main ingredients of the most standard protocols. Despite great progress in recent years, accurately modeling the conformational variability of long flexible loops remains a challenging problem. Future advances in this field will likely come from a tight coupling of experimental and computational techniques, which would enable a better understanding of the relationships between loop sequence, structural flexibility, and functional roles.
Identifiants
pubmed: 34409304
doi: 10.1016/j.crstbi.2021.07.002
pii: S2665-928X(21)00014-3
pmc: PMC8361254
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
187-191Informations de copyright
© 2021 The Authors.
Déclaration de conflit d'intérêts
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
J Mol Biol. 2002 Nov 15;324(1):105-21
pubmed: 12421562
Bioinformatics. 2013 Dec 15;29(24):3158-66
pubmed: 24078704
Curr Opin Struct Biol. 2010 Dec;20(6):702-10
pubmed: 20951028
J Comput Chem. 2004 Mar;25(4):510-28
pubmed: 14735570
PLoS Comput Biol. 2014 Apr 24;10(4):e1003539
pubmed: 24763317
Bioinformatics. 2018 Mar 15;34(6):949-956
pubmed: 29136084
Intrinsically Disord Proteins. 2015 Oct 23;3(1):e1095697
pubmed: 28232893
J Mol Biol. 1997 Mar 7;266(4):814-30
pubmed: 9102471
Sci Rep. 2018 Sep 12;8(1):13673
pubmed: 30209260
Int J Mol Sci. 2021 May 24;22(11):
pubmed: 34074028
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048
pubmed: 28430426
Nat Struct Mol Biol. 2018 Jan;25(1):4-12
pubmed: 29323277
J Chem Theory Comput. 2013 Mar 12;9(3):1821-9
pubmed: 26587638
Proteins. 2004 May 1;55(2):351-67
pubmed: 15048827
J Mol Graph Model. 2018 Sep;84:64-68
pubmed: 29920424
Protein Sci. 2001 Mar;10(3):599-612
pubmed: 11344328
PLoS One. 2014 Nov 24;9(11):e113811
pubmed: 25419655
Chem Rev. 2016 Jun 8;116(11):6391-423
pubmed: 26889708
J Comput Chem. 2004 May;25(7):956-67
pubmed: 15027107
Bioinformatics. 2020 Jul 1;36(Suppl_1):i268-i275
pubmed: 32657412
Science. 2006 Sep 15;313(5793):1638-42
pubmed: 16973882
Bioinformatics. 2020 Feb 15;36(4):1099-1106
pubmed: 31504192
Biol Chem. 2019 Feb 25;400(3):275-288
pubmed: 30676995
Bioinformatics. 2015 Dec 1;31(23):3767-72
pubmed: 26249814
Bioinformatics. 2017 May 1;33(9):1346-1353
pubmed: 28453681
Nucleic Acids Res. 2016 Jul 8;44(W1):W395-400
pubmed: 27151199
J Am Chem Soc. 2018 Nov 21;140(46):15889-15903
pubmed: 30362343
Proteins. 2021 Feb;89(2):218-231
pubmed: 32920900
J Chem Theory Comput. 2020 Aug 11;16(8):4757-4775
pubmed: 32559068
PLoS One. 2013 May 21;8(5):e63090
pubmed: 23704889
Bioinformatics. 2019 Sep 1;35(17):3013-3019
pubmed: 30649193
Patterns (N Y). 2020 Nov 12;1(9):100142
pubmed: 33336200
Biochim Biophys Acta. 2015 May;1850(5):872-877
pubmed: 25450171
Biophys J. 2002 Dec;83(6):3113-25
pubmed: 12496082
Proteins. 2016 Sep;84 Suppl 1:293-301
pubmed: 26172288
Proteins. 2010 May 1;78(6):1431-40
pubmed: 20034110
Protein Sci. 2003 May;12(5):963-72
pubmed: 12717019