Recommended Best Practices for Lyophilization Validation-2021 Part I: Process Design and Modeling.
controlled ice nucleation technology (CIN)
freeze-drying
lyophilization
process design
process optimization
Journal
AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111
Informations de publication
Date de publication:
18 Aug 2021
18 Aug 2021
Historique:
received:
05
04
2021
accepted:
29
06
2021
entrez:
19
8
2021
pubmed:
20
8
2021
medline:
26
10
2021
Statut:
epublish
Résumé
This work describes lyophilization process validation and consists of two parts. Part I focuses on the process design and is described in the current paper, while part II is devoted to process qualification and continued process verification. The intent of these articles is to provide readers with recent updates on lyophilization validation in the light of community-based combined opinion on the process and reflect the industrial prospective. In this paper, the design space approach for process design is described in details, and examples from practice are provided. The approach shows the relationship between the process inputs; it is based on first principles and gives a thorough scientific understanding of process and product. The lyophilization process modeling and scale-up are also presented showing the impact of facility, equipment, and vial heat transfer coefficient. The case studies demonstrating the effect of batch sizes, fill volume, and dose strength to show the importance of modeling as well as the effect of controlled nucleation on product resistance are discussed.
Identifiants
pubmed: 34409506
doi: 10.1208/s12249-021-02086-8
pii: 10.1208/s12249-021-02086-8
pmc: PMC8373746
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
221Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s).
Références
J Pharm Sci. 1984 Sep;73(9):1224-37
pubmed: 6491939
J Pharm Sci. 2007 Jul;96(7):1776-93
pubmed: 17221854
J Pharm Sci. 2011 Aug;100(8):3453-3470
pubmed: 21465488
Pharm Dev Technol. 2004;9(1):85-95
pubmed: 15000469
PDA J Pharm Sci Technol. 1997 Jan-Feb;51(1):7-16
pubmed: 9099059
Eur J Pharm Biopharm. 2018 Jul;128:363-378
pubmed: 29733948
J Pharm Sci. 2011 Jan;100(1):311-24
pubmed: 20575053
J Pharm Sci. 2013 Nov;102(11):3915-9
pubmed: 23963664
J Parenter Drug Assoc. 1980 Sep-Oct;34(5):358-68
pubmed: 6905867
J Pharm Sci. 2009 Sep;98(9):3406-18
pubmed: 18781643
Int J Pharm. 2013 Jun 25;450(1-2):70-8
pubmed: 23618961
Eur J Pharm Biopharm. 2013 Oct;85(2):214-22
pubmed: 23643793
J Pharm Sci. 2019 Jan;108(1):382-390
pubmed: 30414868
J Pharm Sci. 2016 Apr;105(4):1427-33
pubmed: 27019959
J Pharm Sci. 2018 Mar;107(3):824-830
pubmed: 29074380
J Pharm Sci. 2019 Sep;108(9):2972-2981
pubmed: 31004653
AAPS PharmSciTech. 2004 Aug 05;5(4):e58
pubmed: 15760055
Pharm Res. 1997 Aug;14(8):969-75
pubmed: 9279875
Int J Pharm. 2006 Apr 26;313(1-2):99-113
pubmed: 16513303
Pharm Res. 2004 Feb;21(2):191-200
pubmed: 15032301
J Pharm Sci. 2020 Jun;109(6):1896-1904
pubmed: 32112825
J Pharm Sci. 2010 Oct;99(10):4363-79
pubmed: 20737639