Allicin inclusions with α-cyclodextrin effectively masking its odor: Preparation, characterization, and olfactory and gustatory evaluation.
allicin
inclusion complex
odor masking
stability
α-cyclodextrin
Journal
Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
revised:
03
07
2021
received:
08
04
2021
accepted:
20
07
2021
pubmed:
20
8
2021
medline:
8
10
2021
entrez:
19
8
2021
Statut:
ppublish
Résumé
Allicin, a chemical found in functional foods, has a variety of beneficial bioactivities but the unpleasent odor and unstability hinder its applications. Isolating products from cyclodextrin (CD) complexation, using β-CD and its derivatives, is usually a time and energy-consuming process. Herein, a high-efficiency and eco-friendly preparation method of an inclusion (allicin@α-CD) formed by allicin and α-CD was designed, which turned liquid allicin into crystal particles with high-speed stirring (10,000 r/min) at 25°C for 10 min in water. In vivo and in vitro masking evaluations showed that the inclusion particles could decrease the unpleasant odor of allicin. Molecular docking and experimental characterization results illustrated that the main reason of odor masking was due to the disulfide and thiocarbonyl groups of allicin being partially encapsulated by the cavity of α-CD. Compared with the physical mixture, the stability of allicin in allicin@α-CD at 60°C for 10 days was 33-fold improved. Overall, this efficient strategy of inclusion provided a promising approach for the industrialization of allicin-related formulations. PRACTICAL APPLICATION: In this study, an environmentally friendly method of α-CD inclusion without the use of organic reagents was designed to solidify and stabilize allicin, which effectively masked the unpleasant odor and taste of allicin. It has contributed greatly to improving the compliance of consumers and provided a new and effective approach to broaden the application of allicin.
Identifiants
pubmed: 34409609
doi: 10.1111/1750-3841.15882
doi:
Substances chimiques
Disulfides
0
Food Additives
0
Sulfinic Acids
0
alpha-Cyclodextrins
0
allicin
3C39BY17Y6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4026-4036Informations de copyright
© 2021 Institute of Food Technologists®.
Références
Ayala-Zavala, J. F., & González-Aguilar, G. A. (2010). Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. Journal of Food Science, 75(7), M398-405. https://doi.org/10.1111/j.1750-3841.2010.01723.x
Block, E., Ahmad, S., Catalfamo, J. L., Jain, M. K., & Apitz-Castro, R. (1985). Antithrombotic organosulfur compounds from garlic: Structural, mechanistic, and synthetic studies. Journal of the American Chemical Society, 108(22), 473-477. https://doi.org/10.1021/ja00282a033
Burian, J., Sacramento, L., & Carlos, I. (2017). Fungal infection control by garlic extracts (Allium sativum L.) and modulation of peritoneal macrophages activity in murine model of sporotrichosis. Brazilian Journal of Biology, 77(4), 848-855. https://doi.org/10.1590/1519-6984.03716
Caron, G., & Ermondi, G. (2007). Classification of α-cyclodextrins inclusion complexes into Type 1 and Type 2: A prelude to log K prediction. Journal of Molecular Graphics and Modelling, 25(5), 731-739. https://doi.org/10.1016/j.jmgm.2006.06.003
Chang, H. T., Lin, C. Y., Hsu, L. S., & Chang, S. T. (2021). Thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oil and its stabilization by microencapsulation with β-cyclodextrin. Molecules (Basel, Switzerland), 26(2). https://doi.org/10.3390/molecules26020409
Chen, H., Zhu, B., Zhao, L., Liu, Y., Zhao, F., Feng, J., …, & Wei, Y. (2018). Allicin inhibits proliferation and invasion in vitro and in vivo via SHP-1-mediated STAT3 signaling in cholangiocarcinoma. Cellular Physiology and Biochemistry, 47(2), 641-653. https://doi.org/10.1159/000490019
Cui, H., Siva, S., & Lin, L. (2019). Ultrasound processed cuminaldehyde/2-hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization and antibacterial activity. Ultrasonics Sonochemistry, 56, 84-93. https://doi.org/10.1016/j.ultsonch.2019.04.001
Dias, M. I., Ferreira, I. C., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4), 1035-1052. https://doi.org/10.1039/c4fo01175a
Dwivedi, V. P., Bhattacharya, D., Singh, M., Bhaskar, A., Kumar, S., Fatima, S., …, & Das, G. (2019). Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection. Journal of Ethnopharmacology, 243, 111634. https://doi.org/10.1016/j.jep.2018.12.008
Fratianni, F., Ombra, M. N., Cozzolino, A., Riccardi, R., Spigno, P., Tremonte, P., …, & Nazzaro, F. (2016). Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.). Journal of Functional Foods, 21, 240-248. https://doi.org/10.1016/j.jff.2015.12.019
Fumić, B., Jablan, J., Cinčić, D., Zovko Končić, M., & Jug, M. (2018). Cyclodextrin encapsulation of daidzein and genistein by grinding: implication on the glycosaminoglycan accumulation in mucopolysaccharidosis type II and III fibroblasts. Journal of Microencapsulation, 35(1), 1-12. https://doi.org/10.1080/02652048.2017.1409819
Han, X., Jiang, H., Han, L., Xiong, X., He, Y., Fu, C., …, & Yang, M. (2018). A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle. Acta pharmaceutica sinica B, 8(2), 209-217. https://doi.org/10.1016/j.apsb.2017.08.001
Holas, C., Chiu, Y.-L., Notario, G., & Kapral, D. (2005). A pooled analysis of seven randomized crossover studies of the palatability of cefdinir oral suspension versus amoxicillin/clavulanate potassium, cefprozil, azithromycin, and amoxicillin in children aged 4 to 8 years. Clinical Therapeutics, 27(12), 1950-1960. https://doi.org/10.1016/j.clinthera.2005.11.017
Huang, C. Y., Yeh, T. F., Hsu, F. L., Lin, C. Y., Chang, S. T., & Chang, H. T. (2018). Xanthine oxidase inhibitory activity and thermostability of Cinnamaldehyde-Chemotype leaf oil of cinnamomum osmophloeum microencapsulated with β-cyclodextrin. Molecules (Basel, Switzerland), 23(5). https://doi.org/10.3390/molecules23051107
Jebali, A., Hekmatimoghaddam, S., Behzadi, A., Rezapor, I., Mohammadi, B. H., Jasemizad, T., …, & Soltani, M. (2013). Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme. Cellulose, 20(6), 2897-2907. https://doi.org/10.1007/s10570-013-0084-3
Junnila, A., Revay, E. E., Müller, G. C., Kravchenko, V., Qualls, W. A., Allen, S. A., …, & Schlein, Y. (2015). Efficacy of attractive toxic sugar baits (ATSB) against Aedes albopictus with garlic oil encapsulated in beta-cyclodextrin as the active ingredient. Acta Tropica, 152, 195-200. https://doi.org/10.1016/j.actatropica.2015.09.006
Li, X., Guo, Z., Hao, J.-B., Li, B., Liu, C.-B., Guo, T., …, & Zhang, J.-W. (2014). Synergetic taste masking of lipid coating and beta-cyclodextrin inclusion. Yao Xue Xue Bao. Acta Pharmaceutica Sinica, 49(3), 392-398. https://pubmed.ncbi.nlm.nih.gov/24961113/
Li, X., Porcino, M., Martineau-Corcos, C., Guo, T., Xiong, T., Zhu, W., …, & Gref, R. (2020). Efficient incorporation and protection of lansoprazole in cyclodextrin metal-organic frameworks. International Journal of Pharmaceutics, 585, 119442. https://doi.org/10.1016/j.ijpharm.2020.119442
Mai, N. N. S., Nakai, R., Kawano, Y., & Hanawa, T. (2020). Enhancing the solubility of curcumin using a solid dispersion system with Hydroxypropyl-β-Cyclodextrin prepared by grinding, freeze-drying, and common solvent evaporation methods. Pharmacy, 8(4), 203. https://doi.org/10.3390/pharmacy8040203
Malaquias, L. F. B., Sá-Barreto, L. C. L., Freire, D. O., Silva, I. C. R., Karan, K., Durig, T., …, & Cunha-Filho, M. (2018). Taste masking and rheology improvement of drug complexed with beta-cyclodextrin and hydroxypropyl-β-cyclodextrin by hot-melt extrusion. Carbohydrate Polymers, 185, 19-26. https://doi.org/10.1016/j.carbpol.2018.01.011
Mariano, M., Bernardinelli, O. D., Pires-Oliveira, R., Ferreira, G. A., & Loh, W. (2020). Inclusion complexation between α-cyclodextrin and Oligo(ethylene glycol) methyl ether methacrylate. ACS Omega, 5(16), 9517-9528. https://doi.org/10.1021/acsomega.0c00741
Minami, T., Boku, T., Inada, K., Morita, M., & Okazaki, Y. (1989). Odor components of human breath after the ingestion of grated raw garlic. Journal of Food Science, 54(3), 763-763. https://doi.org/10.1111/j.1365-2621.1989.tb04703.x
Munch, R., & Barringer, S. A. (2014). Deodorization of garlic breath volatiles by food and food components. Journal of Food Science, 79(4), C526-C533. https://doi.org/10.1111/1750-3841.12394
Nguyen, T. V. A., & Yoshii. (2018). Release behavior of allyl sulfide from cyclodextrin inclusion complex of allyl sulfide under different storage conditions. Biosci Biotech Bioch, https://doi.org/10.1080/09168451.2018.1440173
Nikolic, V. (2004). Allylthiosulfinate: beta-cyclodextrin inclusion complex: preparation, characterization and microbiological activity. Pharmazie Die, 59(11), 845-848.
Piletti, R., Zanetti, M., Jung, G., de Mello, J. M. M., Dalcanton, F., Soares, C., …, & Fiori, M. A. (2019). Microencapsulation of garlic oil by β-cyclodextrin as a thermal protection method for antibacterial action. Materials Science & Engineering. C: Materials for Biological Applications, 94, 139-149. https://doi.org/10.1016/j.msec.2018.09.037
Reiter, J., Borlinghaus, J., Dörner, P., Schröder, W., Gruhlke, M. C., Klaas, M., & Slusarenko, A. J. (2020). Investigation of the deposition behaviour and antibacterial effectivity of allicin aerosols and vapour using a lung model. Experimental and Therapeutic Medicine, 19(2), 1541-1549. https://doi.org/10.3892/etm.2019.8387
Roseblade, A., Ung, A., & Bebawy, M. (2017). Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer. Acta Pharmacol Sin B, 38(010), 1353-1368. https://doi.org/10.1038/aps.2016.170
Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018). Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules (Basel, Switzerland), 23(5). https://doi.org/10.3390/molecules23051161
Tana Da, S., Nakamura, T., Kawasaki, N., Kurihara, T., & Umemoto, Y. (1996). Adsorption behavior of water molecules onto α-, β-, and γ-cyclodextrins and branched α-cyclodextrins. Journal of Colloid & Interface Science, 181(1), 326-330. https://doi.org/10.1006/jcis.1996.0385
Taucher, J., Hansel, A., Jordan, A., & Lindinger, W. (1996). Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry. Journal of Agricultural and Food Chemistry, 44(12), 3778-3782. https://doi.org/10.1021/jf960640e
Țigu, A. B., Toma, V. A., Moț, A. C., Jurj, A., Moldovan, C. S., Fischer-Fodor, E., …, & Pârvu, M. (2020). The synergistic antitumor effect of 5-Fluorouracil combined with allicin against lung and colorectal carcinoma cells. Molecules (Basel, Switzerland), 25(8), https://doi.org/10.3390/molecules25081947
Wang, H., Li, X., Liu, X., Shen, D., Qiu, Y., Zhang, X., & Song, J. (2015). Influence of pH, concentration and light on stability of allicin in garlic (Allium sativum L.) aqueous extract as measured by UPLC. Journal of the Science of Food and Agriculture, 95(9), 1838-1844. https://doi.org/10.1002/jsfa.6884
Wang, Y.-F., Shao, J.-J., Wang, Z.-L., & Lu, Z.-X. (2012). Study of allicin microcapsules in β-cyclodextrin and porous starch mixture. Food Research International, 49(2), 641-647. https://doi.org/10.1016/j.foodres.2012.09.033
Wang, Y., Jia, J., Shao, J., Shu, X., Ren, X., Wu, B., & Yan, Z. (2018). Preservative effects of allicin microcapsules on daily foods. LWT, 98, 225-230. https://doi.org/10.1016/j.lwt.2018.08.043
Yanxiao, L., Zhaoqi, Z., Yafen, H., & Xuguang, Q. (2012). Study on preparation and stability of allicin-β-cyclodextrin microcapsule. Science and Technology of Food, 33(005), 194-197. https://doi.org/10.13386/j.issn1002-0306.2012.05.097
Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6(100), 205-214. https://doi.org/10.1016/j.jff.2013.10.008
Zheng, H. M., Li, H. B., Wang, D. W., & Liu, D. (2013). Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials. Journal of Food Science, 78(8), N1301-N1306. https://doi.org/10.1111/1750-3841.12208