Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues.

Endometrial stem cells (EnSCs) Mesenchymal stromal cells (MSCs) Niche Ovarian stem cells (OSCs) Progenitors Regeneration Rejuvenation Spermatogonial stem cells (SSCs) Stem cells Very small embryonic-like stem cells (VSELs)

Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
06 2022
Historique:
accepted: 11 08 2021
pubmed: 20 8 2021
medline: 23 6 2022
entrez: 19 8 2021
Statut: ppublish

Résumé

Compared to embryonic and induced pluripotent stem cells, mesenchymal stem/stromal cells (MSCs) have made their presence felt with good therapeutic promise and safety profile. Transplanting MSCs has successfully helped to reverse infertility and resulted in live births in animal models and also in humans. But the underlying mechanism for their therapeutic potential is not yet clear. MSCs are not pluripotent and hence lack plasticity to differentiate into multiple adult cell types. They rather act as 'paracrine providers' to the tissue-resident stem cells since similar beneficial effects are also observed when their secretome (microvesicles or exosomes) is transplanted. Cytokines, growth factors, signaling lipids, mRNAs, and miRNAs secreted by MSCs enables tissue-resident stem cells to undergo differentiation into specific cell types. Tissue-resident stem cells include pluripotent, very small embryonic-like stem cells (VSELs) and progenitors [spermatogonial (SSCs), ovarian (OSCs) and endometrial (EnSCs) stem cells in testes, ovary and uterus respectively] which function in a subtle manner to maintain life-long tissue homeostasis and regenerate damaged (non-functional) reproductive tissues by differentiating into sperm, oocytes and endometrial epithelial cells respectively. Similar to restoring spermatogenesis, primordial follicles numbers are increased upon transplanting MSCs. Published literature suggests that MSCs do not differentiate into epithelial cells in the endometrium. Nuclear OCT-4 positive VSELs and cytoplasmic OCT-4, AXIN2 and KERATIN-19 positive epithelial progenitors have a greater role during endometrial regeneration. We propose, transplantation of MSCs simply provides growth factors/cytokines essential for the tissue-resident stem/progenitor cells to undergo differentiation into sperm, eggs and endometrial epithelial cells in the reproductive tissues.

Identifiants

pubmed: 34410593
doi: 10.1007/s12015-021-10243-6
pii: 10.1007/s12015-021-10243-6
doi:

Substances chimiques

Cytokines 0

Types de publication

Letter Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1718-1727

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–545. https://doi.org/10.1126/science.1180794 .
doi: 10.1126/science.1180794 pubmed: 20110496 pmcid: 4105182
Goodell, M. A., Nguyen, H., & Shroyer, N. (2015). Somatic stem cell heterogeneity: Diversity in the blood, skin and intestinal stem cell compartments. Nature Reviews Molecular Cell Biology, 16(5), 299–309. https://doi.org/10.1038/nrm3980 .
doi: 10.1038/nrm3980 pubmed: 25907613 pmcid: 5317203
De Rosa, L., & De Luca, M. (2012). Cell biology: Dormant and restless skin stem cells. Nature., 489(7415), 215–7. https://doi.org/10.1038/489215a .
doi: 10.1038/489215a pubmed: 22972293
Clevers, H., & Watt, F. M. (2018). Defining adult stem cells by function, not by phenotype. Annual Review of Biochemistry, 20(87), 1015–1027. https://doi.org/10.1146/annurev-biochem-062917-012341 .
doi: 10.1146/annurev-biochem-062917-012341
Post, Y., & Clevers, H. (2019). Defining adult stem cell function at its simplest: The ability to replace lost cells through mitosis. Cell Stem Cell, 25(2), 174–183. https://doi.org/10.1016/j.stem.2019.07.002 .
doi: 10.1016/j.stem.2019.07.002 pubmed: 31374197
Karthaus, W. R., Hofree, M., Choi, D., Linton, E. L., Turkekul, M., Bejnood, A., et al. (2020). Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 368, 497–505.
pubmed: 32355025 pmcid: 7313621 doi: 10.1126/science.aay0267
Bhartiya, D. (2021). Adult tissue-resident stem cells-fact or fiction? Stem Cell Research & Therapy, 12(1), 73. https://doi.org/10.1186/s13287-021-02142-x .
doi: 10.1186/s13287-021-02142-x
Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., et al. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature Communications, 11, 1147.
pubmed: 32123174 pmcid: 7052271 doi: 10.1038/s41467-020-14936-3
Guo, J., Nie, X., Giebler, M., Mlcochova, H., Wang, Y., et al. (2020). The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell, 26, 262–276.
pubmed: 31928944 pmcid: 7298616 doi: 10.1016/j.stem.2019.12.005
Mucenski, M. L., Mahoney, R., Adam, M., Potter, A. S., & Potter, S. S. (2019). Single cell RNA-seq study of wild type and Hox 9,10,11 mutant developing uterus. Science and Reports, 9, 4557.
doi: 10.1038/s41598-019-40923-w
Bhartiya D, Kausik A, Singh P, Sharma D (2021) Will single-cell RNAseq decipher stem cells biology in normal and cancerous tissues? Hum Reprod Update, 27(2), 421. https://doi.org/10.1093/humupd/dmaa058 .
Bhartiya, D., & Sharma, D. (2020). Ovary does harbor stem cells-size of the cells matter! Journal of Ovarian Research, 13(1), 39.
pubmed: 32303227 pmcid: 7164193 doi: 10.1186/s13048-020-00647-2
Singh, P., & Bhartiya, D. (2020). Pluripotent stem (VSELs) and progenitor (EnSCs) cells exist in adult mouse uterus and show cyclic changes across estrus cycle. Reproductive Sciences, 28(1), 278–290.
pubmed: 32710237 doi: 10.1007/s43032-020-00250-2
Bhartiya, D., Ali Mohammad, S., Guha, A., Singh, P., Sharma, D., & Kaushik, A. (2019). Evolving definition of adult stem/progenitor cells. Stem Cell Reviews and Reports, 15(3), 456–458.
pubmed: 30879243 doi: 10.1007/s12015-019-09879-2
Kaushik, A., & Bhartiya, D. (2020). Additional evidence to establish existence of two stem cell populations including VSELs and SSCs in adult mouse testes. Stem Cell Reviews and Reports, 16, 992–1004.
pubmed: 32578128 doi: 10.1007/s12015-020-09993-6
Parte, S., Patel, H., Sriraman, K., & Bhartiya, D. (2015). Isolation and characterization of stem cells in the adult mammalian ovary. Methods in Molecular Biology, 1235, 203–229.
pubmed: 25388396 doi: 10.1007/978-1-4939-1785-3_16
Mohammad, S. A., Metkari, S., & Bhartiya, D. (2020). Mouse pancreas stem/progenitor cells get augmented by streptozotocin and regenerate diabetic pancreas after partial pancreatectomy. Stem Cell Reviews and Reports, 16, 144–158.
pubmed: 31705263 doi: 10.1007/s12015-019-09919-x
Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs): An update and future directions. Circulation Research, 124, 208–210.
pubmed: 30653438 pmcid: 6461217 doi: 10.1161/CIRCRESAHA.118.314287
Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., et al. (2016). Endogenous, very small embryonic-like stem cells: Critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23, 41–76.
pubmed: 27614362 doi: 10.1093/humupd/dmw030
Bhartiya, D., Patel, H., Ganguly, R., Shaikh, A., Shukla, Y., Sharma, D., et al. (2018). Novel insights into adult and cancer stem cell biology. Stem Cells and Development, 27, 1527–1539.
pubmed: 30051749 doi: 10.1089/scd.2018.0118
Bhartiya, D. (2019). Clinical translation of stem cells for regenerative medicine. Circulation Research, 124(6), 840–842.
pubmed: 30870131 doi: 10.1161/CIRCRESAHA.118.313823
Bhartiya, D. (2017). Pluripotent stem cells in adult tissues: Struggling to be acknowledged over two decades. Stem Cell Reviews and Reports, 13(6), 713–724. https://doi.org/10.1007/s12015-017-9756-y .
doi: 10.1007/s12015-017-9756-y pubmed: 28815441
Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.
pubmed: 18786417 doi: 10.1016/j.stem.2008.07.003
Kfoury, Y., & Scadden, D. T. (2015). Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell, 16(3), 239–253. https://doi.org/10.1016/j.stem.2015.02.019 .
doi: 10.1016/j.stem.2015.02.019 pubmed: 25748931
Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611. https://doi.org/10.1016/j.cell.2008.01.038 .
doi: 10.1016/j.cell.2008.01.038 pubmed: 18295578 pmcid: 4505728
Ehninger, A., & Trumpp, A. (2011). The bone marrow stem cell niche grows up: Mesenchymal stem cells and macrophages move in. Journal of Experimental Medicine, 208, 421–428.
pubmed: 21402747 pmcid: 3058583 doi: 10.1084/jem.20110132
De Luca, L., Trino, S., Laurenzana, I., Lamorte, D., Caivano, A., Del Vecchio, L., et al. (2017). Mesenchymal stem cell derived extracellular vesicles: A role in hematopoietic transplantation? International Journal of Molecular Sciences, 18, 1022.
pmcid: 5454935 doi: 10.3390/ijms18051022
Crippa, S., & Bernardo, M. E. (2018). Mesenchymal stromal cells: role in the BM niche and in the support of hematopoietic stem cell transplantation. Hemasphere., 2, e151.
pubmed: 31723790 pmcid: 6745957 doi: 10.1097/HS9.0000000000000151
Frenette, P. S., Pinho, S., Lucas, D., & Scheiermann, C. (2013). Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annual Review of Immunology, 31, 285–316.
pubmed: 23298209 doi: 10.1146/annurev-immunol-032712-095919
Caplan, A. I. (2008). All MSCs are pericytes? Cell Stem Cell, 3, 229–230.
pubmed: 18786406 doi: 10.1016/j.stem.2008.08.008
Gotts, J. E., & Matthay, M. A. (2012). Mesenchymal stem cells and the stem cell niche: A new chapter. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302(11), L1147–L1149. https://doi.org/10.1152/ajplung.00122.2012 .
doi: 10.1152/ajplung.00122.2012 pubmed: 22505672
Esfandyari, S., Elkafas, H., Chugh, R. M., Park, H. S., Navarro, A., & Al-Hendy, A. (2021). Exosomes as biomarkers for female reproductive diseases diagnosis and therapy. International Journal of Molecular Sciences, 22(4), 2165. https://doi.org/10.3390/ijms22042165 .
doi: 10.3390/ijms22042165 pubmed: 33671587 pmcid: 7926632
Chang, C., Yan, J., Yao, Z., Zhang, C., Li, X., & Mao, H. Q. (2021). Effects of mesenchymal stem cell-derived paracrine signals and their delivery strategies. Adv Healthc Mater., 10(7), e2001689. https://doi.org/10.1002/adhm.202001689 .
doi: 10.1002/adhm.202001689 pubmed: 33433956
Esfandyari, S., Chugh, R. M., Park, H. S., Hobeika, E., Ulin, M., & Al-Hendy, A. (2020). Mesenchymal stem cells as a bio-organ for treatment of female infertility. Cells, 9(10), 2253.
pmcid: 7599919 doi: 10.3390/cells9102253
Fazeli, Z., Abedindo, A., Omrani, M. D., & Ghaderian, S. M. H. (2018). Mesenchymal stem cells (MSCs) therapy for recovery of fertility: A systematic review. Stem Cell Reviews and Reports, 14(1), 1–12. https://doi.org/10.1007/s12015-017-9765-x .
doi: 10.1007/s12015-017-9765-x pubmed: 28884412
Zhao, Y. X., Chen, S. R., Su, P. P., Huang, F. H., Shi, Y. C., Shi, Q. Y., & Lin, S. (2019). Using mesenchymal stem cells to treat female infertility: An update on female reproductive diseases. Stem Cells International, 6(2019), 9071720. https://doi.org/10.1155/2019/9071720 .
doi: 10.1155/2019/9071720
Ratajczak, M. Z., Bujko, K., Mack, A., Kucia, M., & Ratajczak, J. (2018). Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia, 32(12), 2519–2526.
pubmed: 30375490 pmcid: 6286324 doi: 10.1038/s41375-018-0294-7
Taichman, R. S., Wang, Z., Shiozawa, Y., Jung, Y., Song, J., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells and Development, 19(10), 1557–1570. https://doi.org/10.1089/scd.2009.0445 .
doi: 10.1089/scd.2009.0445 pubmed: 20446812 pmcid: 3089003
Virant-Klun, I., & Stimpfel, M. (2016). Novel population of small tumor-initiating stem cells in the ovaries of women with borderline ovarian cancer. Science and Reports, 6, 34730.
doi: 10.1038/srep34730
Kaushik, A., & Bhartiya, D. (2018). Pluripotent very small embryonic-like stem cells in adult testes - an alternate premise to explain testicular germ cell tumors. Stem Cell Reviews and Reports, 14(6), 793–800.
pubmed: 30238242 doi: 10.1007/s12015-018-9848-3
Martin, J. J., Woods, D. C., & Tilly, J. L. (2019). Implications and current limitations of oogenesis from female germline or oogonial stem cells in adult mammalian ovaries. Cells, 8, 93.
pmcid: 6407002 doi: 10.3390/cells8020093
Virant-Klun, I., Zech, N., Rozman, P., Vogler, A., Cvjeticanin, B., Klemenc, P., Malicev, E., & Meden-Vrtovec, H. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 76(8), 843–856.
pubmed: 18452550 doi: 10.1111/j.1432-0436.2008.00268.x
Silvestris, E., D’Oronzo, S., Cafforio, P., Kardhashi, A., Dellino, M., & Cormio, G. (2019). In vitro generation of oocytes from ovarian stem cells (OSCs): In search of major evidence. International Journal of Molecular Sciences, 20(24), 6225.
pmcid: 6940822 doi: 10.3390/ijms20246225
Clarkson, Y. L., McLaughlin, M., Waterfall, M., et al. (2018). Initial characterisation of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Science and Reports, 8, 6953.
doi: 10.1038/s41598-018-25116-1
Anand, S., Bhartiya, D., Sriraman, K., & Mallick, A. (2016). Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Reviews and Reports., 12, 682–697.
pubmed: 27663915 doi: 10.1007/s12015-016-9685-1
Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 23(11), 1493–1508.
pubmed: 27189070 doi: 10.1177/1933719116643593
Bhartiya, D., Kasiviswanathan, S., Unni, S. K., Pethe, P., Dhabalia, J. V., et al. (2010). Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. Journal of Histochemistry and Cytochemistry, 58(12), 1093–1106. https://doi.org/10.1369/jhc.2010.956870 .
doi: 10.1369/jhc.2010.956870 pubmed: 20805580 pmcid: 2989246
Gunjal, P., Bhartiya, D., Metkari, S., Manjramkar, D., & Patel, H. (2015). Very small embryonic-like stem cells are the elusive mouse endometrial stem cells–a pilot study. Journal of Ovarian Research, 8, 9.
pubmed: 25824685 pmcid: 4369871 doi: 10.1186/s13048-015-0138-2
James, K., Bhartiya, D., Ganguly, R., Kaushik, A., Gala, K., Singh, P., et al. (2018). Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. Journal of Ovarian Research, 11, 83.
pubmed: 30241552 pmcid: 6148988 doi: 10.1186/s13048-018-0454-4
Bhartiya, D., & James, K. (2017). Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. Journal of Ovarian Research, 10, 29.
pubmed: 28438190 pmcid: 5404303 doi: 10.1186/s13048-017-0324-5
Bhartiya, D., Anand, S., & Kaushik, A. (2020). Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 26, 136–137.
pubmed: 31730693 doi: 10.1093/humupd/dmz030
Sharma, S., Wistuba, J., Neuhaus, N., & Schlatt, S. (2020). Reply: Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 26, 138.
pubmed: 31730708 doi: 10.1093/humupd/dmz031
Ganguly, R., Anand, S., Metkari, S., & Bhartiya, D. (2020). Effect of aging and 5-fluorouracil treatment on bone marrow stem cell dynamics. Stem Cell Reviews and Reports, 16, 909–921.
pubmed: 32601899 doi: 10.1007/s12015-020-09998-1
Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Virant-Klun, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews and Reports, 13(202), 16.zsA.
Sriraman, K., Bhartiya, D., Anand, S., & Bhutda, S. (2015). Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reproductive Sciences, 22, 884–903.
pubmed: 25779995 pmcid: 4565482 doi: 10.1177/1933719115576727
Gomez-Salazar, M., Gonzalez-Galofre, Z. N., Casamitjana, J., Crisan, M., James, A. W., & Péault, B. (2020). Five decades later, are mesenchymal stem cells still relevant? Frontiers Bioengineering Biotechnology., 8, 148.
doi: 10.3389/fbioe.2020.00148
Guimaraes-Camboa, N., Cattaneo, P., Sun, Y., Moore-Morris, T., Gu, Y., Dalton, N. D., et al. (2017). Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell, 20, 345–359.
pubmed: 28111199 pmcid: 5337131 doi: 10.1016/j.stem.2016.12.006
Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regenerative Medicine., 4, 22.
pubmed: 31815001 pmcid: 6889290 doi: 10.1038/s41536-019-0083-6
Sagaradze, G. D., Basalova, N. A., Efimenko, A. Y., & Tkachuk, V. A. (2020). Mesenchymal stromal cells as critical contributors to tissue regeneration. Front Cell Developmental Biology., 8, 576176.
doi: 10.3389/fcell.2020.576176
Qian, C., Meng, Q., Lu, J., Zhang, L., Li, H., & Huang, B. (2020). Human amnion mesenchymal stem cells restore spermatogenesis in mice with busulfan-induced testis toxicity by inhibiting apoptosis and oxidative stress. Stem Cell Research & Therapy, 11(1), 290.
doi: 10.1186/s13287-020-01803-7
Liu, C., Yin, H., Jiang, H., Du, X., Wang, C., Liu, Y., et al. (2020). Extracellular vesicles derived from mesenchymal stem cells recover fertility of premature ovarian insufficiency mice and the effects on their offspring. Cell Transplantation, 29, 963689720923575.
pubmed: 32363925
Un, B. C., Akpolat, M., & Un, B. (2020). Can mesenchymal stem cells ameliorate testicular damage Current researches? Journal of Surgery and Medicine, 4(7), 603–607.
doi: 10.28982/josam.770063
Shen YC, Larose H, Shami AN , Moritz L, Gabriel L et al. (2021). Tcf21
Sagaradze, G., Grigorieva, O., Nimiritsky, P., Basalova, N., Kalinina, N., Akopyan, Z., & Efimenko, A. (2019). Conditioned medium from human mesenchymal stromal cells: Towards the clinical translation. International Journal of Molecular Sciences, 20(7), 1656.
pmcid: 6479925 doi: 10.3390/ijms20071656
Kurkure, P., Prasad, M., Dhamankar, V., & Bakshi, G. (2015). Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reproductive Biology and Endocrinology, 9(13), 122. https://doi.org/10.1186/s12958-015-0121-1 .
doi: 10.1186/s12958-015-0121-1
Gabr, H., & Elkheir, W. A. (2015). Autologous MSC therapy for azoospermia: a pilot clinical study. Cytotherapy, 17(Suppl), 51.
Zhankina, R., Baghban, N., Askarov, M., Saipiyeva, D., Ibragimov, A., et al. (2021). Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: A systemic review. Stem Cell Research & Therapy, 12(1), 229. https://doi.org/10.1186/s13287-021-02295-9 .
doi: 10.1186/s13287-021-02295-9
Edessy, M., Hosni, H. N., Shady, Y., Waf, Y., Bakr, S., & Kamel, M. (2016). Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure. Acta Medical international, 3, 19–23.
doi: 10.5530/ami.2016.1.7
Igboeli, P., El Andaloussi, A., Sheikh, U., et al. (2020). Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. Journal of Medical Case Reports, 14, 108.
pubmed: 32680541 pmcid: 7368722 doi: 10.1186/s13256-020-02426-5
Zhang, Q., Bu, S., Sun, J., et al. (2017). Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Research & Therapy, 8, 270.
doi: 10.1186/s13287-017-0721-0
Bhartiya, D., & Patel, H. (2018). Ovarian stem cells-resolving controversies. Journal of Assisted Reproduction and Genetics, 35(3), 393–398.
pubmed: 29128912 doi: 10.1007/s10815-017-1080-6
Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K., & Hinduja, I. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells and Development, 20(8), 1451–1464.
pubmed: 21291304 pmcid: 3148829 doi: 10.1089/scd.2010.0461
Wang, Z., Wang, Y., Yang, T., Li, J., & Yang, X. (2017). Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice [published correction appears in Stem Cell Res Ther. 2017;8(1):49]. Stem Cell Research & Therapy, 8(1), 11.
doi: 10.1186/s13287-016-0458-1
Zhao, Y., Ma, J., Yi, P., et al. (2020). Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Research & Therapy, 11, 466.
doi: 10.1186/s13287-020-01972-5
Hong, L., Yan, L., Xin, Z., Hao, J., Liu, W., Wang, S., et al. (2020). Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage. Journal of Molecular Cell Biology, 12(5), 372–385.
pubmed: 31742349 doi: 10.1093/jmcb/mjz105
Li, J., Mao, Q., He, J., She, H. Q., Zhang, Z., & Yin, C. Y. (2017). Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Research & Therapy, 8(1), 55.
doi: 10.1186/s13287-017-0514-5
Cousins, F. L., Pandoy, R., Jin, S., & Gargett, C. E. (2021). The elusive endometrial epithelial stem/progenitor cells. Frontiers Cell Developmental Biology., 9, 640319. https://doi.org/10.3389/fcell.2021.640319 .
doi: 10.3389/fcell.2021.640319
Santamaria, X., Mas, A., Cervelló, I., Taylor, H., & Simon, C. (2018). Uterine stem cells: From basic research to advanced cell therapies. Human Reproduction Update, 24(6), 673–693.
pubmed: 30239705 doi: 10.1093/humupd/dmy028
Taylor, H. S. (2004). Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA, 292(1), 81–85.
pubmed: 15238594 doi: 10.1001/jama.292.1.81
Bozorgmehr, M., Gurung, S., Darzi, S., Nikoo, S., Kazemnejad, S., Zarnani, A. H., et al. (2020). Endometrial and menstrual blood mesenchymal stem/stromal cells: Biological properties and clinical application. Frontiers in Cell and Development Biology, 8, 497.
doi: 10.3389/fcell.2020.00497
Gargett, C. E., Schwab, K. E., & Deane, J. A. (2016). Endometrial stem/progenitor cells: The first 10 years. Human Reproduction Update, 22(2), 137–163.
pubmed: 26552890
Ghosh, A., Syed, S. M., Kumar, M., Carpenter, T. J., Teixeira, J. M., et al. (2020). In vivo cell fate tracing provides no evidence for mesenchymal to epithelial transition in adult fallopian tube and uterus. Cell Reports, 31(6), 107631. https://doi.org/10.1016/j.celrep.2020.107631 .
doi: 10.1016/j.celrep.2020.107631 pubmed: 32402291
Bhartiya, D. (2016). An update on endometrial stem cells and progenitors. Human Reproduction Update, 22, 529–530.
pubmed: 27016288 doi: 10.1093/humupd/dmw010
Gargett, C. E., Deane, J. A., & Schwab, K. E. (2016). Reply: An update on endometrial stem cells and progenitors by Deepa Bhartiya. Hum Reprod Update, 22(4), 530–1. https://doi.org/10.1093/humupd/dmw011Ogawa .
doi: 10.1093/humupd/dmw011Ogawa pubmed: 27016290
LaRue M, A. C., & Mehrotra, M. (2013). Hematopoietic stem cells are pluripotent and not just “hematopoietic.” Blood Cells, Molecules & Diseases, 51(1), 3–8.
doi: 10.1016/j.bcmd.2013.01.008
Horwitz, E. M. (2003). Stem cell plasticity: A new image of the bone marrow stem cell. Current Opinion in Pediatrics, 15(1), 32–37.
pubmed: 12544269 doi: 10.1097/00008480-200302000-00006
Graf, T. (2002). Differentiation plasticity of hematopoietic cells. Blood, 99(9), 3089–3101.
pubmed: 11964270 doi: 10.1182/blood.V99.9.3089
Krause, D. S. (2002). Plasticity of marrow-derived stem cells. Gene Therapy, 9(11), 754–758.
pubmed: 12032704 doi: 10.1038/sj.gt.3301760
Kassmer, S. H., Bruscia, E. M., Zhang, P. X., & Krause, D. S. (2012). Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells, 30(3), 491–499.
pubmed: 22162244 pmcid: 3725285 doi: 10.1002/stem.1003
Ciechanowicz, A. K., Sielatycka, K., Cymer, M., Skoda M,Suszy ´nska M, , et al. (2021). Bone marrow-derived VSELs engraft as lung epithelial progenitor cells after bleomycin-induced lung injury. Cells, 10, 1570. https://doi.org/10.3390/cells10071570 .
doi: 10.3390/cells10071570 pubmed: 34206516 pmcid: 8303224
Bhartiya, D. (2013). Are mesenchymal cells indeed pluripotent stem cells or just stromal cells? OCT-4 and VSELs biology has led to better understanding. Stem Cells International, 2013(2013), 547501.
pubmed: 24187558 pmcid: 3800663
Dezawa, M. (2016). Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of Muse cells to tissue regeneration. Cell Transplantation, 25(5), 849–861.
pubmed: 26884346 doi: 10.3727/096368916X690881
Deane, J. A., Ong, Y., Cousins, F. L., & Gargett, C. E. (2019). Bone marrow-derived endometrial cells: Trans-differentiation or misidentification? Hum Reprod Update., 25(2), 272–274.
pubmed: 30576448 doi: 10.1093/humupd/dmy041
Santamaria, X., Mas, A., Cervelló, I., Taylor, H. S., & Simon, C. (2019). Reply: Bone marrow-derived endometrial cells: What you see is what you get. Human Reproduction Update, 25(2), 274–275.
pubmed: 30601981 doi: 10.1093/humupd/dmy042
Morelli, S. S., Rameshwar, P., & Goldsmith, L. T. (2013). Experimental evidence for bone marrow as a source of nonhematopoietic endometrial stromal and epithelial compartment cells in a murine model. Biology of Reproduction, 89(1), 7. https://doi.org/10.1095/biolreprod.113.107987 .
doi: 10.1095/biolreprod.113.107987 pubmed: 23699390
Yi, K. W., Mamillapalli, R., Sahin, C., Song, J., Tal, R., & Taylor, H. S. (2019). Bone marrow-derived cells or C-X-C motif chemokine 12 (CXCL12) treatment improve thin endometrium in a mouse model. Biology of Reproduction, 100(1), 61–70.
pubmed: 30084961 doi: 10.1093/biolre/ioy175
Syed, S. M., Kumar, M., Ghosh, A., et al. (2020). Endometrial Axin2+ cells drive epithelial homeostasis, regeneration, and cancer following oncogenic transformation. Cell Stem Cell, 26(1), 64–80.
pubmed: 31883834 doi: 10.1016/j.stem.2019.11.012
Jin, S. (2019). Bipotent stem cells support the cyclical regeneration of endometrial epithelium of the murine uterus. Proc Natl Acad Sci U S A., 116(14), 6848–6857.
pubmed: 30872480 pmcid: 6452687 doi: 10.1073/pnas.1814597116
Nagori, C. B., Panchal, S. Y., & Patel, H. (2011). Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. Journal of Human Reproductive Sciences., 4(1), 43–48.
pubmed: 21772740 pmcid: 3136069 doi: 10.4103/0974-1208.82360
Santamaria, X., Cabanillas, S., Cervelló, I., Arbona, C., Raga, F., Ferro, J., et al. (2016). Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: A pilot cohort study. Human Reproduction, 31(5), 1087–1096.
pubmed: 27005892 doi: 10.1093/humrep/dew042
Tan, J., Li, P., Wang, Q., Li, Y., Li, X., Zhao, D., et al. (2016). Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Human Reproduction, 31(12), 2723–2729.
pubmed: 27664218 doi: 10.1093/humrep/dew235
Ma, H., Liu, M., Li, Y., Wang, W., Yang, K., Lu, L., et al. (2020). Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion. The Journal of Obstetrics and Gynaecology Research, 46, 2347–2355.
pubmed: 32856391 doi: 10.1111/jog.14449
Ho, C. H., Lan, C. W., Liao, C. Y., Hung, S. C., Li, H. Y., & Sung, Y. J. (2018). Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model. Journal of the Chinese Medical Association, 81(3), 268–276.
pubmed: 28882732 doi: 10.1016/j.jcma.2017.03.013
Ebrahim, N., Mostafa, O., El Dosoky, R. E., et al. (2018). Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model. Stem Cell Research & Therapy, 9, 175.
doi: 10.1186/s13287-018-0924-z
Benor, A., Gay, S., & De Cherney, A. (2020). An update on stem cell therapy for Asherman syndrome. Journal of Assisted Reproduction and Genetics, 37, 1511–1529.
pubmed: 32445154 pmcid: 7376809 doi: 10.1007/s10815-020-01801-x
Rungsiwiwut R, Ingrungruanglert P, Numchaisrika P, Virutamasen P, Phermthai T, Pruksananonda K (2016) Human umbilical cord blood-derived serum for culturing the supportive feeder cells of human pluripotent stem cell lines. Stem Cells International. https://doi.org/10.1155/2016/4626048 .
Marinaro, F., Gómez-Serrano, M., Jorge, I., Silla-Castro, J. C., Vázquez, J., Sánchez-Margallo, F. M., et al. (2019). Unraveling the molecular signature of extracellular vesicles from endometrial-derived mesenchymal stem cells: Potential modulatory effects and therapeutic applications. Front Bioeng Biotechnol., 7, 431.
pubmed: 31921832 pmcid: 6932983 doi: 10.3389/fbioe.2019.00431
Cao, Y., Sun, H., Zhu, H., Zhu, X., Tang, X., Yan, G., et al. (2018). Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: A phase I clinical trial. Stem Cell Research & Therapy, 9(1), 192.
doi: 10.1186/s13287-018-0904-3
Bazoobandi S, Tanideh N, Rahmanifar F, Zare S et al (2020) Preventive effects of intrauterine injection of bone marrow-derived mesenchymal stromal cell-conditioned media on uterine fibrosis immediately after endometrial curettage in rabbit. Stem Cells International. https://doi.org/10.1155/2020/8849537 .

Auteurs

Deepa Bhartiya (D)

Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India. bhartiyad@nirrh.res.in.

Pushpa Singh (P)

Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.

Diksha Sharma (D)

Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.

Ankita Kaushik (A)

Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH