Expression of nitric oxide synthases in rat odontoblasts and the role of nitric oxide in odontoblastic differentiation of rat dental papilla cells.
cGMP
dental papilla cell
differentiation
nitric oxide
odontoblasts
Journal
Development, growth & differentiation
ISSN: 1440-169X
Titre abrégé: Dev Growth Differ
Pays: Japan
ID NLM: 0356504
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
revised:
23
07
2021
received:
11
02
2021
accepted:
08
08
2021
pubmed:
20
8
2021
medline:
18
1
2022
entrez:
19
8
2021
Statut:
ppublish
Résumé
As precursor cells of odontoblasts, dental papilla cells (DPCs) form the dentin-pulp complex during tooth development. Nitric oxide (NO) regulates the functions of multiple cells and organ tissues, including stem cell differentiation and bone formation. In this paper, we explored the involvement of NO in odontoblastic differentiation. We verified the expression of NO synthase (NOS) in rat odontoblasts by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining and immunohistochemistry in vivo. The expression of all three NOS isoforms in rat DPCs was confirmed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting in vitro. The expression of neuronal NOS and endothelial NOS was upregulated during the odontoblastic differentiation of DPCs. Inhibition of NOS function by NOS inhibitor l-N
Substances chimiques
Nitric Oxide
31C4KY9ESH
Nitric Oxide Synthase
EC 1.14.13.39
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
354-371Subventions
Organisme : National Natural Science Foundation of China
ID : 81771098
Organisme : National Natural Science Foundation of China
ID : 81870737
Organisme : Natural Science Foundation of Guangdong Province
ID : 2021A1515011779
Organisme : Guangdong Financial Fund for High-Caliber Hospital Construction
ID : 174-2018-XMZC-0001-03-0125/D-02
Informations de copyright
© 2021 Japanese Society of Developmental Biologists.
Références
Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Nuclear recruitment of neuronal nitric-oxide synthase by α-syntrophin is crucial for the induction of mitochondrial biogenesis. The Journal of Biological Chemistry, 289, 365-378.
Arana-Chavez, V. E., & Massa, L. F. (2004). Odontoblasts: The cells forming and maintaining dentine. The International Journal of Biochemistry & Cell Biology, 36, 1367-1373.
Baba, O., Qin, C., Brunn, J. C., Wygant, J. N., Mcintyre, B. W., & Butler, W. T. (2004). Colocalization of dentin matrix protein 1 and dentin sialoprotein at late stages of rat molar development. Matrix Biology : Journal of the International Society for Matrix Biology, 23, 371-379.
Bègue-Kirn, C., Krebsbach, P. H., Bartlett, J. D., & Butler, W. T. (1998). Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: Tooth-specific molecules that are distinctively expressed during murine dental differentiation. European Journal of Oral Sciences, 106, 963-970.
Bonafè, F., Guarnieri, C., & Muscari, C. (2015). Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. Journal of Physiology and Biochemistry, 71, 141-153.
Buwalda B., Nyakas C., Gast J., Luiten P.G.M., Schmidt H.H.H.W. (1995). Aldehyde fixation differentially affects distribution of diaphorase activity but not of nitric oxide synthase immunoreactivity in rat brain. Brain Research Bulletin, 38(5), 467-473. http://dx.doi.org/10.1016/0361-9230(95)02017-l
Cao Y., Song M., Kim E., Shon W., Chugal N., Bogen G., Lin L., Kim R.H., Park N.-H., Kang M.K. (2015). Pulp-dentin Regeneration. Journal of Dental Research, 94(11), 1544-1551. http://dx.doi.org/10.1177/0022034515601658
Chang, B., Svoboda, K. K. H., & Liu, X. (2019). Cell polarization: From epithelial cells to odontoblasts. European Journal of Cell Biology, 98, 1-11.
Chang, H. M., Ling, E. A., Chen, C. F., Lue, H., Wen, C. Y., & Shieh, J. Y. (2002). Melatonin attenuates the neuronal NADPH-d/NOS expression in the nodose ganglion of acute hypoxic rats. Journal of Pineal Research, 32, 65-73.
Chiesa, J. J., Baidanoff, F. M., & Golombek, D. A. (2018). Don't just say no: Differential pathways and pharmacological responses to diverse nitric oxide donors. Biochemical Pharmacology, 156, 1-9.
Ciani, E., Severi, S., Contestabile, A., Bartesaghi, R., & Contestabile, A. (2004). Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. Journal of Cell Science, 117, 4727-4737.
Cork R. J., Calhoun T., Perrone M., Mize R. R. (2000). Postnatal development of nitric oxide synthase expression in the mouse superior colliculus. The Journal of Comparative Neurology, 427(4), 581-592. http://dx.doi.org/10.1002/1096-9861(20001127)427:4<581::aid-cne6>3.0.co;2-m
Da Silva, L. P., Issa, J. P., & Del Bel, E. A. (2008). Action of nitric oxide on healthy and inflamed human dental pulp tissue. Micron, 39, 797-801.
Dawson T. M., Bredt D. S., Fotuhi M., Hwang P. M., Snyder S. H. (1991). Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues.. Proceedings of the National Academy of Sciences, 88(17), 7797-7801. http://dx.doi.org/10.1073/pnas.88.17.7797
D'alessandro, L., Petrini, M., Ferrante, M., Di Marco, S., Trubiani, O., & Spoto, G. (2013). Cyclic nucleotide phosphodiesterase activity in stem cells of human periodontal ligament (PDL-MSCs) before and after osteogenic induction. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 116, e317-e323.
Di Nardo Di Maio, F., Lohinai, Z., & D'arcangelo, C., et al. (2004). Nitric oxide synthase in healthy and inflamed human dental pulp. Journal of Dental Research, 83, 312-316.
D'souza, R. N., Cavender, A., & Sunavala, G., et al. (1997). Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. Journal of Bone and Mineral Research, 12, 2040-2049.
Doyle C.A., Slater P. (1997). Localization of neuronal and endothelial nitric oxide synthase isoforms in human hippocampus. Neuroscience, 76(2), 387-395. http://dx.doi.org/10.1016/s0306-4522(96)00297-7
Felaco, M., Di Maio, F. D., De Fazio, P., et al. (2000). Localization of the e-NOS enzyme in endothelial cells and odontoblasts of healthy human dental pulp. Life Sciences, 68, 297-306.
Feng, Y., Venema, V. J., Venema, R. C., Tsai, N., & Caldwell, R. B. (1999). VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochemical and Biophysical Research Communications, 256, 192-197.
Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. European Heart Journal, 33, 829-837, 837a-837d. https://doi.org/10.1093/eurheartj/ehr304
Francis, S. H., Busch, J. L., Corbin, J. D., & Sibley, D. (2010). cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacological Reviews, 62, 525-563.
Gilchrist, M., Mccauley, S. D., & Befus, A. D. (2004). Expression, localization, and regulation of NOS in human mast cell lines: Effects on leukotriene production. Blood, 104, 462-469. https://doi.org/10.1182/blood-2003-08-2990
Giordano, A., Tonello, C., Bulbarelli, A., et al. (2002). Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus. FEBS Letters, 514, 135-140.
Gómez-Pinedo, U., Rodrigo, R., Cauli, O., et al. (2010). cGMP modulates stem cells differentiation to neurons in brain in vivo. Neuroscience, 165, 1275-1283.
Guirado S., Real M. Á., Olmos J. L., Dávila J. C. (2003). Distinct types of nitric oxide-producing neurons in the developing and adult mouse claustrum. Journal of Comparative Neurology, 465(3), 431-444. http://dx.doi.org/10.1002/cne.10835
Guthrie, S. M., Curtis, L. M., Mames, R. N., Simon, G. G., Grant, M. B., & Scott, E. W. (2005). The nitric oxide pathway modulates hemangioblast activity of adult hematopoietic stem cells. Blood, 105, 1916-1922.
Hao, J., He, G., Narayanan, K., et al. (2005). Identification of differentially expressed cDNA transcripts from a rat odontoblast cell line. Bone, 37, 578-588.
He, Y., Fan, W., Xu, Y., Liu, Y. L., He, H., & Huang, F. (2019). Distribution and colocalization of melatonin 1a-receptor and NADPH-d in the trigeminal system of rat. PeerJ, 7, e6877.
Hecker, M., Mülsch, A., & Busse, R. (1994). Subcellular localization and characterization of neuronal nitric oxide synthase. Journal of Neurochemistry, 62, 1524-1529.
Hikiji, H., Shin, W. S., Oida, S., Takato, T., Koizumi, T., & Toyo-Oka, T. (1997). Direct action of nitric oxide on osteoblastic differentiation. FEBS Letters, 410, 238-242.
Hope B. T., Michael G. J., Knigge K. M., Vincent S. R. (1991). Neuronal NADPH diaphorase is a nitric oxide synthase. Proceedings of the National Academy of Sciences, 88(7), 2811-2814. http://dx.doi.org/10.1073/pnas.88.7.2811
Hu, Y., Chen, M., Wang, M., & Li, X. (2021). Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends in Cardiovascular Medicine, 31(6) https://doi.org/10.1016/j.tcm.2020.12.010. online ahead of print.
Huang, L., Qiu, N., Zhang, C., et al. (2008). Nitroglycerin enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via nitric oxide pathway. Acta Pharmacologica Sinica, 29, 580-586.
Inoue, A., Hiruma, Y., Hirose, S., Yamaguchi, A., & Hagiwara, H. (1995). Reciprocal regulation by cyclic nucleotides of the differentiation of rat osteoblast-like cells and mineralization of nodules. Biochemical and Biophysical Research Communications, 215, 1104-1110.
Ishizuka, Y., Yoshida, M., Ambe, K., Sasaki, J., Sugihara, N., & Watanabe, H. (2019). Expression profiles of NOS isoforms in dental pulp and odontoblasts in nNOS knockout mice. The Bulletin of Tokyo Dental College, 60, 261-266.
Joshua, J., Kalyanaraman, H., Marathe, N., & Pilz, R. B. (2014). Nitric oxide as a mediator of estrogen effects in osteocytes. Vitamins and Hormones, 96, 247-263.
Joshua, J., Schwaerzer, G. K., Kalyanaraman, H., et al. (2014). Soluble guanylate cyclase as a novel treatment target for osteoporosis. Endocrinology, 155, 4720-4730.
Jukić, S., Talan-Hranilović, J., Buković, D., Miletić, I., & Neziri, E. (2002). Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry detecting NOS in healthy and chronically inflamed pulp. Collegium Antropologicum, 26, 681-688.
Jussila, M., & Thesleff, I. (2012). Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harbor Perspectives in Biology, 4, a008425.
Kalyanaraman, H., Ramdani, G., Joshua, J., et al. (2017). A novel, Direct NO Donor Regulates osteoblast and osteoclast functions and increases bone mass in ovariectomized mice. Journal of Bone and Mineral Research, 32, 46-59.
Kang, Y., Liu, R., Wu, J. X., & Chen, L. (2019). Structural insights into the mechanism of human soluble guanylate cyclase. Nature, 574, 206-210.
Kawashima, N., & Okiji, T. (2016). Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex. Congenital Anomalies, 56, 144-153.
Kerezoudis, N. P., Olgart, L., & Fried, K. (1993). Localization of NADPH-diaphorase activity in the dental pulp, periodontium and alveolar bone of the rat. Histochemistry, 100, 319-322.
Korkmaz Y., Baumann M. A., Schröder H., Behrends S., Addicks K., Raab W. H. M., Bloch W. (2004). Localization of the NO-cGMP Signaling Pathway Molecules, NOS III-Phosphorylation Sites, ERK1/2, and Akt/PKB in Osteoclasts. Journal of Periodontology, 75(8), 1119-1125. http://dx.doi.org/10.1902/jop.2004.75.8.1119
Korkmaz, Y., Baumann, M. A., Steinritz, D., et al. (2005). NO-cGMP signaling molecules in cells of the rat molar dentin-pulp complex. Journal of Dental Research, 84, 618-623.
Law, A. S., Baumgardner, K. R., Meller, S. T., & Gebhart, G. F. (1999). Localization and changes in NADPH-diaphorase reactivity and nitric oxide synthase immunoreactivity in rat pulp following tooth preparation. Journal of Dental Research, 78, 1585-1595.
Lee, S.-K., Choi, H.-I., Yang, Y.-S., Jeong, G.-S., Hwang, J.-H., Lee, S.-I., Kang, K.-H., Cho, J.-H., Chae, J.-M., Lee, S.-K., Kim, Y.-C., & Kim, E.-C. (2009). Nitric oxide modulates osteoblastic differentiation with heme oxygenase-1 via the mitogen activated protein kinase and nuclear factor-kappaB pathways in human periodontal ligament cells. Biological & Pharmaceutical Bulletin, 32, 1328-1334. https://doi.org/10.1248/bpb.32.1328
Li, B., Ouchi, T., Cao, Y., Zhao, Z., & Men, Y. (2021). Dental-derived mesenchymal stem cells: State of the Art. Frontiers in Cell and Developmental Biology, 9, 654559.
Lin, I. C., Smartt, J. M., Jr., Nah, H. D., Ischiropoulos, H., & Kirschner, R. E. (2008). Nitric oxide stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells. Plastic and Reconstructive Surgery, 121, 1554-1566; discussion 1567-1559.
Lisi, S., Peterková, R., Peterka, M., Vonesch, J. L., Ruch, J. V., & Lesot, H. (2003). Tooth morphogenesis and pattern of odontoblast differentiation. Connective Tissue Research, 44(Suppl 1), 167-170.
Liu, J., Huang, F., & He, H. W. (2013). Melatonin effects on hard tissues: Bone and tooth. International Journal of Molecular Sciences, 14, 10063-10074.
Liu, J., Zhou, H., Fan, W., et al. (2013). Melatonin influences proliferation and differentiation of rat dental papilla cells in vitro and dentine formation in vivo by altering mitochondrial activity. Journal of Pineal Research, 54, 170-178.
Mancini, L., Moradi-Bidhendi, N., Becherini, L., Martineti, V., & Macintyre, I. (2000). The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochemical and Biophysical Research Communications, 274, 477-481.
Marathe, N., Rangaswami, H., Zhuang, S., Boss, G. R., & Pilz, R. B. (2012). Pro-survival effects of 17β-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II. The Journal of Biological Chemistry, 287, 978-988.
Mastrangelo, F., Sberna, M. T., Tettamanti, L., Cantatore, G., Tagliabue, A., & Gherlone, E. (2016). Vascular endothelial growth factor and nitric oxide synthase expression in human tooth germ development. Journal of Biological Regulators and Homeostatic Agents, 30, 421-432.
Matsumoto T., Nakane M., Pollock J. S., Kuk J. E., Förstermann U. (1993). A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative. Neuroscience Letters, 155(1), 61-64. http://dx.doi.org/10.1016/0304-3940(93)90673-9
Mei, Y. F., Yamaza, T., Atsuta, I., Danjo, A., Yamashita, Y., Kido, M. A., Goto, M., Akamine, A., & Tanaka, T. (2007). Sequential expression of endothelial nitric oxide synthase, inducible nitric oxide synthase, and nitrotyrosine in odontoblasts and pulp cells during dentin repair after tooth preparation in rat molars. Cell and Tissue Research, 328, 117-127. https://doi.org/10.1007/s00441-005-0003-5
Michurina, T., Krasnov, P., Balazs, A., et al. (2004). Nitric oxide is a regulator of hematopoietic stem cell activity. Molecular Therapy, 10, 241-248.
Möller, M. N., Rios, N., Trujillo, M., Radi, R., Denicola, A., & Alvarez, B. (2019). Detection and quantification of nitric oxide-derived oxidants in biological systems. Journal of Biological Chemistry, 294, 14776-14802.
Moncada, S., & Higgs, A. (1993). The L-arginine-nitric oxide pathway. The New England Journal of Medicine, 329, 2002-2012.
Moradian-Oldak J., George A. (2021). Biomineralization of enamel and dentin mediated by matrix proteins. Journal of Dental Research, 100(10), 1020-1029. http://dx.doi.org/10.1177/00220345211018405
Morris B.J., Simpson C.S., Mundell S., Maceachern K., Johnston H.M., Nolan A.M. (1997). Dynamic changes in NADPH-diaphorase staining reflect activity of nitric oxide synthase: Evidence for a dopaminergic regulation of striatal nitric oxide release. Neuropharmacology, 36(11-12), 1589-1599. http://dx.doi.org/10.1016/s0028-3908(97)00159-7
Mujoo, K., Krumenacker, J. S., & Murad, F. (2011). Nitric oxide-cyclic GMP signaling in stem cell differentiation. Free Radical Biology and Medicine, 51, 2150-2157.
Mujoo, K., Nikonoff, L. E., Sharin, V. G., Bryan, N. S., Kots, A. Y., & Murad, F. (2012). Curcumin induces differentiation of embryonic stem cells through possible modulation of nitric oxide-cyclic GMP pathway. Protein & Cell, 3, 535-544.
Mujoo, K., Sharin, V. G., Bryan, N. S., et al. (2008). Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 18924-18929.
Narayanan, K., Gajjeraman, S., Ramachandran, A., Hao, J., & George, A. (2006). Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. The Journal of Biological Chemistry, 281, 19064-19071.
Oess, S., Icking, A., Fulton, D., Govers, R., & Müller-Esterl, W. (2006). Subcellular targeting and trafficking of nitric oxide synthases. The Biochemical Journal, 396, 401-409.
Otsuka, E., Hirano, K., Matsushita, S., et al. (1998). Effects of nitric oxide from exogenous nitric oxide donors on osteoblastic metabolism. European Journal of Pharmacology, 349, 345-350.
Pari, S., Abnosi, M. H., & Pakyari, R. (2017). Sodium nitroprusside changed the metabolism of mesenchymal stem cells to an anaerobic state while viability and proliferation remained intact. Cell Journal, 19, 146-158.
Pietrelli A., López-Costa J.J., Goñi R., López E. M., Brusco A., Basso N. (2011). Effects of moderate and chronic exercise on the nitrergic system and behavioral parameters in rats. Brain Research, 1389, 71-82. http://dx.doi.org/10.1016/j.brainres.2011.03.005
Quattrone, S., Chiappini, L., Scapagnini, G., Bigazzi, B., & Bani, D. (2004). Relaxin potentiates the expression of inducible nitric oxide synthase by endothelial cells from human umbilical vein in in vitro culture. Molecular Human Reproduction, 10, 325-330.
Rangaswami, H., Marathe, N., Zhuang, S., et al. (2009). Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. The Journal of Biological Chemistry, 284, 14796-14808.
Rangaswami, H., Schwappacher, R., Marathe, N., et al. (2010). Cyclic GMP and protein kinase G control a Src-containing mechanosome in osteoblasts. Science Signaling, 3, ra91.
Ruch, J. V., Lesot, H., & Bègue-Kirn, C., (1995). Odontoblast differentiation. The International journal of developmental biology, 39, 51-68.
Saluja, R., Saini, R., Mitra, K., Bajpai, V. K., & Dikshit, M. (2010). Ultrastructural immunogold localization of nitric oxide synthase isoforms in rat and human eosinophils. Cell and Tissue Research, 340, 381-388.
Santos, A., Bakker, A. D., Zandieh-Doulabi, B., De Blieck-Hogervorst, J. M., & Klein-Nulend, J. (2010). Early activation of the beta-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochemical and Biophysical Research Communications, 391, 364-369.
Seo, T., Cha, S., Woo, K. M., et al. (2011). Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist. Journal of Periodontal & Implant Science, 41, 17-22.
Sessa, W. C., García-Cardeña, G., Liu, J., et al. (1995). The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. The Journal of Biological Chemistry, 270, 17641-17644.
Shah D., Lynd T., Ho D., Chen J., Vines J., Jung H.-D., Kim J.-H., Zhang P., Wu H., Jun H.-W., Cheon K. (2020). Pulp-Dentin tissue healing response: A discussion of current biomedical approaches. Journal of Clinical Medicine, 9(2), 434. http://dx.doi.org/10.3390/jcm9020434
Sismanoglu, S., & Ercal, P. (2020). Dentin-pulp tissue regeneration approaches in dentistry: An overview and current trends. Advances in Experimental Medicine and Biology, 1298, 79-103.
Snyder, S. H. (1995). Nitric oxide. No endothelial NO. Nature, 377, 196-197.
Sonoda, S., Mei, Y. F., Atsuta, I., et al. (2018). Exogenous nitric oxide stimulates the odontogenic differentiation of rat dental pulp stem cells. Scientific Reports, 8, 3419.
Speranza, L., Pesce, M., Franceschelli, S., et al. (2012). The role of inducible nitric oxide synthase and haem oxygenase 1 in growth and development of dental tissue. Cell Biochemistry and Function, 30, 217-223.
Staines, K. A., Macrae, V. E., & Farquharson, C. (2012). The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. The Journal of Endocrinology, 214, 241-255.
Sui, B., Chen, C., Kou, X., et al. (2019). Pulp stem cell-mediated functional pulp regeneration. Journal of Dental Research, 98, 27-35.
Svandova, E., Peterkova, R., Matalova, E., & Lesot, H. (2020). Formation and developmental specification of the odontogenic and osteogenic mesenchymes. Frontiers in Cell and Developmental Biology, 8, 640.
Tan, S. D., Bakker, A. D., Semeins, C. M., Kuijpers-Jagtman, A. M., & Klein-Nulend, J. (2008). Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochemical and Biophysical Research Communications, 369, 1150-1154.
Tesfamariam, B. (2020). Targeting heme-oxidized soluble guanylate cyclase to promote osteoblast function. Drug Discovery Today, 25, 422-429.
Tziafas, D., & Kodonas, K. (2010). Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. Journal of Endodontics, 36, 781-789.
Van't Hof, R. J., & Ralston, S. H. (2001). Nitric oxide and bone. Immunology, 103, 255-261.
Villanueva, C., & Giulivi, C. (2010). Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radical Biology & Medicine, 49, 307-316.
Wimalawansa, S. J. (2007). Rationale for using nitric oxide donor therapy for prevention of bone loss and treatment of osteoporosis in humans. Annals of the New York Academy of Sciences, 1117, 283-297.
Wong, J. C., & Fiscus, R. R. (2011). Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Iα autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. Journal of Cellular Biochemistry, 112, 829-839. https://doi.org/10.1002/jcb.22981
Xiao, S., Li, Q., Hu, L., et al. (2019). Soluble guanylate cyclase stimulators and activators: Where are we and where to go? Mini Reviews in Medicinal Chemistry, 19, 1544-1557.
Yang, S., Guo, L., Su, Y., et al. (2018). Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells. Stem Cell Research & Therapy, 9, 118.
Yasuhara, R., Suzawa, T., Miyamoto, Y., et al. (2007). Nitric oxide in pulp cell growth, differentiation, and mineralization. Journal of Dental Research, 86, 163-168.
Yu, T., & Klein, O. D. (2020). Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development, 147, dev184754.
Yuan, Z., Liu, B., Yuan, L., Zhang, Y., Dong, X., & Lu, J. (2004). Evidence of nuclear localization of neuronal nitric oxide synthase in cultured astrocytes of rats. Life Sciences, 74, 3199-3209.
Zhai, Q., Dong, Z., Wang, W., Li, B., & Jin, Y. (2019). Dental stem cell and dental tissue regeneration. Frontiers of Medicine, 13, 152-159.
Zhang, F., Jiang, L., He, Y., et al. (2018). Changes of mitochondrial respiratory function during odontogenic differentiation of rat dental papilla cells. Journal of Molecular Histology, 49, 51-61.