Experimental study and modelling of asphaltene deposition on metal surfaces with superhydrophobic and low sliding angle inner coatings.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 Aug 2021
Historique:
received: 09 02 2021
accepted: 22 07 2021
entrez: 20 8 2021
pubmed: 21 8 2021
medline: 21 8 2021
Statut: epublish

Résumé

Inner coatings have emerged as a novel technique to prevent the deposition of paraffin, wax, scale, and corrosion of pipelines during oil production and transport. Few studies addressed this technique for preventing asphaltene deposition. In this study, two superhydrophobic inner coatings, including polytetrafluoroethylene (PTFE) coating and nanosilica coating, were fabricated on metal surfaces and the asphaltene deposition on these coated surfaces was examined. A model oil solution was prepared using asphaltene and heptol and the effect of static and dynamic flow states on the amount of asphaltene deposition on uncoated electrodes, PTFE coated electrodes, and nanosilica coated electrodes were investigated. The results showed that the PTFE coating is more effective in reducing asphaltene deposition than nanosilica coating. The PTFE coating could reduce 56% of the deposition in a static state and more than 70% in a dynamic state at an asphaltene concentration of 2000 ppm. For PTFE coating in a dynamic state, the deposition rate is negligible in long times. In addition, it was found that the type of flow state affects the asphaltene deposition kinetics. The results demonstrate that, in the static state, the nth-order kinetics model, and in the dynamic state, the double exponential models are in best agreement with the experimental data.

Identifiants

pubmed: 34413341
doi: 10.1038/s41598-021-95657-5
pii: 10.1038/s41598-021-95657-5
pmc: PMC8377080
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16812

Informations de copyright

© 2021. The Author(s).

Références

Moore, E., Crowe, C. & Hendrickson, A. J. J. O. P. T. Formation, effect and prevention of asphaltene sludges during stimulation treatments. J. Pet. Technol. 17, 1023–021028 (1965).
doi: 10.2118/1163-PA
Speight, J. J. O. Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum. Oil Gas Sci. Technol. 59, 467–477 (2004).
doi: 10.2516/ogst:2004032
Escobedo, J. & Mansoori, G. A. Asphaltene and other heavy-organic particle deposition during transfer and production operations. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. (1995).
Davudov, D. & Moghanloo, R. G. A new model for permeability impairment due to asphaltene deposition. Fuel 235, 239–248 (2019).
doi: 10.1016/j.fuel.2018.07.079
Buenrostro-Gonzalez, E., Lira-Galeana, C., Gil-Villegas, A. & Wu, J. Asphaltene precipitation in crude oils: Theory and experiments. AIChE J. 50, 2552–2570 (2004).
doi: 10.1002/aic.10243
Kord, S., Soleymanzadeh, A. & Miri, R. A generalized scaling equation to predict asphaltene precipitation during precipitant dilution, natural depletion, water injection and gas injection. J. Pet. Sci. Eng. 182, 106320 (2019).
doi: 10.1016/j.petrol.2019.106320
Mullins, O. C., Sheu, E. Y., Hammami, A. & Marshall, A. G. Asphaltenes, Heavy Oils, and Petroleomics (Springer Science & Business Media, 2007).
doi: 10.1007/0-387-68903-6
Wang, P. et al. Comparative analysis of CO
doi: 10.3390/en11092483
Lobanov, A. et al. Prediction of asphaltenes deposition in the Russian oilfield: Laboratory investigations and modeling. J. Pet. Sci. Eng. 186, 106777 (2020).
doi: 10.1016/j.petrol.2019.106777
Olkhovskaya, V., Struchkov, I. & Evich, K. Estimation of field production profiles in case of asphaltene deposition. Resour. Eff. Technol. 2020(1), 16–31 (2020).
Groenzin, H. & Mullins, O. C. Asphaltenes, Heavy Oils, and Petroleomics 17–62 (Springer, 2007).
doi: 10.1007/0-387-68903-6_2
Tavakkoli, M., Panuganti, S. R., Taghikhani, V., Pishvaie, M. R. & Chapman, W. G. Asphaltene deposition in different depositing environments: Part 2. Real oil. Energy Fuels 28, 3594–3603 (2014).
doi: 10.1021/ef401868d
Hammami, A. & Ratulowski, J. Asphaltenes, Heavy Oils, and Petroleomics 617–660 (Springer, 2007).
doi: 10.1007/0-387-68903-6_23
Frenier, W. W. & Ziauddin, M. A multifaceted approach for controlling complex deposits in oil and gas production. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. (2010).
Mousavi, S.-P. et al. Toward mechanistic understanding of wettability alteration in calcite and dolomite rocks: The effects of resin, asphaltene, anionic surfactant, and hydrophilic nano particles. J. Mol. Liq. 321, 114672. https://doi.org/10.1016/j.molliq.2020.114672 (2021).
doi: 10.1016/j.molliq.2020.114672
Kord, S., Mohammadzadeh, O., Miri, R. & Soulgani, B. S. Further investigation into the mechanisms of asphaltene deposition and permeability impairment in porous media using a modified analytical model. Fuel 117, 259–268 (2014).
doi: 10.1016/j.fuel.2013.09.038
Kuriakose, A. & Manjooran, S. K. B. J. S. Bitumenous paints from refinery sludge. Surf. Coat. Technol. 145, 132–138 (2001).
doi: 10.1016/S0257-8972(01)01306-8
Mansoori, G. A. & Elmi, A. J. S. P. Remediation of asphaltene and other heavy organic deposits in oil wells and in pipelines. Socar Proc. 4, 12–23 (2010).
Shedid, S. A. & Attallah, S. R. Influences of ultrasonic radiation on asphaltene behavior with and without solvent effects. In SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers. (2004).
Zoveidavianpoor, M., Samsuri, A. & Shadizadeh, S. J. E. S. The clean up of asphaltene deposits in oil wells. Energy Sources Part A Recovery Util. Environ. Effects 35, 22–31 (2013).
Bethke, G. K. et al. A novel coating to reduce solids deposition in production systems. In Offshore Technology Conference. Society of Petroleum Engineers. (2018).
Chi, Y., Daraboina, N. & Sarica, C. Investigation of inhibitors efficacy in wax deposition mitigation using a laboratory scale flow loop. AIChE J. 62, 4131–4139 (2016).
doi: 10.1002/aic.15307
Kumar, D., Chishti, S. S., Rai, A. & Patwardhan, S. D. Scale inhibition using nano-silica particles. In SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition. Society of Petroleum Engineers. (2012).
McKeen, L. W., Mohan, P. K., Mestemacher, S. A., Farnsworth, K. D. & Obal, W. D. Coated pipes for harsh environments. U.S. Patent. (2011).
Rashidi, M., Mombekov, B. & Marhamati, M. A study of a novel inter pipe coating material for paraffin wax deposition control and comparison of the results with current mitigation technique in oil and gas industry. In Offshore Technology Conference Asia. Society of Petroleum Engineers. (2016).
Vázquez-Noriega, O. E. et al. Recent Insights in Petroleum Science and Engineering (IntechOpen, 2017).
Wei, R., Johnson, R. L., Rincon, C. & Miller, M. A. Method for plasma immersion ion processing and depositing coatings in hollow substrates using a heated center electrode. U.S. Patent. (2014).
Frenier, W. W. & Ziauddin, M. Formation, Removal, and Inhibition of Inorganic Scale in the Oilfield Environment (Society of Petroleum Engineers Richardson, 2008).
doi: 10.2118/9781555631406
Liu, Y., Zhuge, X., Wang, Z., Huang, B. & Le, X. Case Study on Fluorocarbons Interior Coating for Anticorrosion and Wax- Deposition Inhibition in ASP Flooding Production. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. (2018).
Joonaki, E., Buckman, J., Burgass, R. & Tohidi, B. J. S. R. Water versus asphaltenes; liquid–liquid and solid–liquid molecular interactions unravel the mechanisms behind an improved oil recovery methodology. Sci. Rep. 9, 1–13 (2019).
doi: 10.1038/s41598-019-47782-5
Hemmati-Sarapardeh, A., Dabir, B., Ahmadi, M., Mohammadi, A. H. & Husein, M. M. Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. J. Mol. Liq. 264, 410–424 (2018).
doi: 10.1016/j.molliq.2018.04.061
Ahooei, A., Norouzi-Apourvari, S., Hemmati-Sarapardeh, A. & Schaffie, M. Experimental study and modeling of asphaltene deposition on metal surfaces via electrodeposition process: The role of ultrasonic radiation, asphaltene concentration and structure. J. Pet. Sci. Eng. 195, 107734 (2020).
doi: 10.1016/j.petrol.2020.107734
Goual, L., Horváth-Szabó, G., Masliyah, J. H. & Xu, Z. Characterization of the charge carriers in bitumen. Energy Fuels 20, 2099–2108 (2006).
doi: 10.1021/ef0601521
Khvostichenko, D. S. & Andersen, S. I. Electrodeposition of asphaltenes. 1. Preliminary studies on electrodeposition from oil–heptane mixtures. Energy Fuels 23, 811–819 (2009).
doi: 10.1021/ef800722g
Taylor, S. E. The electrodeposition of asphaltenes and implications for asphaltene structure and stability in crude and residual oils. Fuel 77, 821–828 (1998).
doi: 10.1016/S0016-2361(97)00271-8
Zekri, A. Y., Shedid, S. A. & Alkashef, H. A new technique for treatment of permeability damage due to asphaltene deposition using laser technology. J. Pet. Sci. Eng. 59, 300–308 (2007).
doi: 10.1016/j.petrol.2007.05.005
Asaadian, H., Soltani Soulgani, B. & Karimi, A. An experimental study on electrical effect on asphaltene deposition. Pet. Sci. Technol. 35, 2255–2261 (2017).
doi: 10.1080/10916466.2017.1397696
Taghavi, H., Ashoori, S. & Mousavi, S. H. Analyzing electrical field effect on asphaltene deposition. Pet. Sci. Technol. 36, 487–493 (2018).
doi: 10.1080/10916466.2017.1347680
Hosseini, A. et al. Electrokinetic behavior of asphaltene particles. Fuel 178, 234–242 (2016).
doi: 10.1016/j.fuel.2016.03.051
Chauveteau, G., Nabzar, L. & Coste, J. Physics and modeling of permeability damage induced by particle deposition. In SPE Formation Damage Control Conference. Society of Petroleum Engineers. (1998).
Kurup, A. S., Buckley, J. S., Wang, J., Subramani, H. J., Creek, J. L., & Chapman, W. G. Asphaltene deposition tool: Field case application protocol. In Offshore Technology Conference. Society of Petroleum Engineers. (2012).
Nabzar, L. & Aguiléra, M. The colloidal approach. A promising route for asphaltene deposition modelling. . Oil Gas Sci. Technol. Revue de l’IFP 63, 21–35 (2008).
doi: 10.2516/ogst:2007083
Rastegari, K., Svrcek, W. Y. & Yarranton, H. W. Kinetics of asphaltene flocculation. Ind. Eng. Chem. Res. 43, 6861–6870 (2004).
doi: 10.1021/ie049594v
Abutaqiya, M. I., Sisco, C. J., Wang, J. & Vargas, F. M. Systematic investigation of asphaltene deposition in the wellbore and near-wellbore region of a deepwater oil reservoir under gas injection. Part 1: thermodynamic modeling of the phase behavior of polydisperse asphaltenes. Energy Fuels 33, 3632–3644 (2019).
doi: 10.1021/acs.energyfuels.8b03234
Taherpour, A., Cheshmeh Sefidi, A., Bemani, A. & Hamule, T. Application of Fuzzy c-means algorithm for the estimation of Asphaltene precipitation. Pet. Sci. Technol. 36, 239–243 (2018).
doi: 10.1080/10916466.2017.1416632
Wilczak, A. & Keinath, T. M. Kinetics of sorption and desorption of copper (II) and lead (II) on activated carbon. Water Environ. Res. 65, 238–244 (1993).
doi: 10.2175/WER.65.3.7
Shayan, N. N. & Mirzayi, B. Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles. Energy Fuels 29, 1397–1406 (2015).
doi: 10.1021/ef502494d
Gupta, S. S. & Bhattacharyya, K. G. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Coll. Interface. Sci. 162, 39–58 (2011).
doi: 10.1016/j.cis.2010.12.004
Qiu, H. et al. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 10, 716–724 (2009).
doi: 10.1631/jzus.A0820524
Tosun, İ. Ammonium removal from aqueous solutions by clinoptilolite: Determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models. Int. J. Environ. Res. Public Health 9, 970–984 (2012).
pubmed: 22690177 pmcid: 3367291 doi: 10.3390/ijerph9030970
Andersen, S. I. & Christensen, S. D. The critical micelle concentration of asphaltenes as measured by calorimetry. Energy Fuels 14, 38–42 (2000).
doi: 10.1021/ef990122g
Standal, S., Haavik, J., Blokhus, A. & Skauge, A. Effect of polar organic components on wettability as studied by adsorption and contact angles. J. Pet. Sci. Eng. 24, 131–144 (1999).
doi: 10.1016/S0920-4105(99)00037-6
Liu, L. & Buckley, J. S. Alteration of wetting of mica surfaces. J. Pet. Sci. Eng. 24, 75–83 (1999).
doi: 10.1016/S0920-4105(99)00050-9
Chang, J. H. & Hunter, I. W. Characterization and control of the wettability of conducting polymer thin films. MRS Online Proceedings Library Archive. 1228 (2009).
Lauer, R. S. The use of high performance polymeric coatings to mitigate corrosion and deposit formation in pipeline applications. In CORROSION 2007. Society of Petroleum Engineers. (2007).
Owens, D. K. & Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969).
doi: 10.1002/app.1969.070130815
Sedlmeier, F. et al. Water at polar and nonpolar solid walls. Biointerphases 3, FC23–FC39 (2008).
pubmed: 20408691 doi: 10.1116/1.2999559
Skartlien, R., Simon, S. & Sjöblom, J. DPD molecular simulations of asphaltene adsorption on hydrophilic substrates: Effects of polar groups and solubility. J. Dispers. Sci. Technol. 37, 866–883 (2016).
doi: 10.1080/01932691.2015.1066259
Jestin, J., Simon, S., Zupancic, L. & Barré, L. A small angle neutron scattering study of the adsorbed asphaltene layer in water-in-hydrocarbon emulsions: Structural description related to stability. Langmuir 23, 10471–10478 (2007).
pubmed: 17867712 doi: 10.1021/la701193f
Wang, S., Liu, J., Zhang, L., Xu, Z. & Masliyah, J. Colloidal interactions between asphaltene surfaces in toluene. Energy Fuels 23, 862–869 (2009).
doi: 10.1021/ef800812k
Adams, J. J. Asphaltene adsorption, a literature review. Energy Fuels 28, 2831–2856 (2014).
doi: 10.1021/ef500282p
Abdallah, W. A. & Taylor, S. D. Study of asphaltenes adsorption on metallic surface using XPS and TOF-SIMS. J. Phys. Chem. C 112, 18963–18972 (2008).
doi: 10.1021/jp804483t
Dudášová, D., Simon, S., Hemmingsen, P. V. & Sjöblom, J. Study of asphaltenes adsorption onto different minerals and clays: Part 1. Experimental adsorption with UV depletion detection. Colloids Surf. A Physicochem. Eng. Aspects 317, 1–9 (2008).
doi: 10.1016/j.colsurfa.2007.09.023
Jouault, N., Corvis, Y., Cousin, F., Jestin, J. & Barré, L. C. Asphaltene adsorption mechanisms on the local scale probed by neutron reflectivity: Transition from monolayer to multilayer growth above the flocculation threshold. Langmuir 25, 3991–3998 (2009).
pubmed: 19714825 doi: 10.1021/la8027447
Moradi, S., Amirjahadi, S., Danaee, I. & Soltani, B. Experimental investigation on application of industrial coatings for prevention of asphaltene deposition in the well-string. J. Pet. Sci. Eng. 181, 106095 (2019).
doi: 10.1016/j.petrol.2019.05.046
Seyedmehdi, S. A., Zhang, H. & Zhu, J. Superhydrophobic RTV silicone rubber insulator coatings. Appl. Surf. Sci. 258, 2972–2976 (2012).
doi: 10.1016/j.apsusc.2011.11.020
Wang, Y. et al. Enhanced performance of superhydrophobic polypropylene membrane with modified antifouling surface for high salinity water treatment. Sep. Purif. Technol. 214, 11–20 (2019).
doi: 10.1016/j.seppur.2018.02.011
Tavakkoli, M. et al. Asphaltene deposition in different depositing environments: Part 1. Model oil. Energy Fuels 28, 1617–1628 (2014).
doi: 10.1021/ef401857t
Cosultchi, A., Rossbach, P. & Hernández-Calderon, I. XPS analysis of petroleum well tubing adherence. Surf. Interface Anal. 35, 239–245 (2003).
doi: 10.1002/sia.1516
Maqbool, T., Balgoa, A. T. & Fogler, H. S. Revisiting asphaltene precipitation from crude oils: A case of neglected kinetic effects. Energy Fuels 23, 3681–3686 (2009).
doi: 10.1021/ef9002236
Wattana, P., Fogler, H. S., Yen, A., Carmen Garcìa, M. D. & Carbognani, L. Characterization of polarity-based asphaltene subfractions. Energy Fuels 19, 101–110 (2005).
doi: 10.1021/ef0499372
Abudu, A. & Goual, L. Adsorption of crude oil on surfaces using quartz crystal microbalance with dissipation (QCM-D) under flow conditions. Energy Fuels 23, 1237–1248 (2009).
doi: 10.1021/ef800616x
Turgman-Cohen, S., Smith, M. B., Fischer, D. A., Kilpatrick, P. K. & Genzer, J. Asphaltene adsorption onto self-assembled monolayers of mixed aromatic and aliphatic trichlorosilanes. Langmuir 25, 6260–6269 (2009).
pubmed: 19334746 doi: 10.1021/la9000895
Xing, C., Hilts, R. & Shaw, J. M. Sorption of Athabasca vacuum residue constituents on synthetic mineral and process equipment surfaces from mixtures with pentane. Energy Fuels 24, 2500–2513 (2010).
doi: 10.1021/ef901297e

Auteurs

Mohammad Haji-Savameri (M)

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Saeid Norouzi-Apourvari (S)

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran. snorouzi@uk.ac.ir.

Ahmad Irannejad (A)

Department of Materials Engineering and Metallurgy, Shahid Bahonar University of Kerman, Kerman, Iran.

Abdolhossein Hemmati-Sarapardeh (A)

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran. hemmati@uk.ac.ir.
Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam. hemmati@uk.ac.ir.
Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam. hemmati@uk.ac.ir.

Mahin Schaffie (M)

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Amir Mosavi (A)

John Von Neumann Faculty of Informatics, Obuda University, Budapest, 1034, Hungary. amir.mosavi@kvk.uni-obuda.hu.

Classifications MeSH