Microglia as hackers of the matrix: sculpting synapses and the extracellular space.
Extracellular matrix
Microglia
Neuroinflammation
Neuroscience
Perineuronal nets
Journal
Cellular & molecular immunology
ISSN: 2042-0226
Titre abrégé: Cell Mol Immunol
Pays: China
ID NLM: 101242872
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
30
04
2021
accepted:
26
07
2021
pubmed:
21
8
2021
medline:
24
3
2022
entrez:
20
8
2021
Statut:
ppublish
Résumé
Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other, and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified, and present the implications of such modifications in normal brain homeostasis and in disease.
Identifiants
pubmed: 34413489
doi: 10.1038/s41423-021-00751-3
pii: 10.1038/s41423-021-00751-3
pmc: PMC8546068
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2472-2488Subventions
Organisme : NINDS NIH HHS
ID : F31 NS111882
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG056768
Pays : United States
Organisme : NINDS NIH HHS
ID : F31 NS108611
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS083801
Pays : United States
Organisme : NIA NIH HHS
ID : U54 AG054349
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG065329
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Kierdorf K, Prinz M. Microglia in steady state. J Clin Investig. 2017;127:3201–9.
pubmed: 28714861
pmcid: 5669563
doi: 10.1172/JCI90602
Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.
pubmed: 29151590
doi: 10.1038/nri.2017.125
Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179:292–311.
pubmed: 31585077
doi: 10.1016/j.cell.2019.08.053
Salter MichaelW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS. Cell. 2014;158:15–24.
doi: 10.1016/j.cell.2014.06.008
pubmed: 24995975
Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50:253–271.e6.
pubmed: 30471926
doi: 10.1016/j.immuni.2018.11.004
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron. 2019;101:207–23.e10.
doi: 10.1016/j.neuron.2018.12.006
pubmed: 30606613
Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92.
pubmed: 30760929
doi: 10.1038/s41586-019-0924-x
Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity. 2015;43:92–106.
pubmed: 26163371
doi: 10.1016/j.immuni.2015.06.012
Han J, Harris RA, Zhang XM. An updated assessment of microglia depletion: current concepts and future directions. Mol Brain. 2017;10:25.
pubmed: 28629387
pmcid: 5477141
doi: 10.1186/s13041-017-0307-x
Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82:380–97.
pubmed: 24742461
pmcid: 4161285
doi: 10.1016/j.neuron.2014.02.040
Green KN, Crapser JD, Hohsfield LA. To kill a microglia: a case for CSF1R inhibitors. Trends Immunol. 2020;41:771–84.
pubmed: 32792173
pmcid: 7484341
doi: 10.1016/j.it.2020.07.001
Han J, Zhu K, Zhang XM, Harris RA. Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia. 2019;67:217–31.
pubmed: 30378163
doi: 10.1002/glia.23529
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.
doi: 10.1126/science.1110647
pubmed: 15831717
Liu YU, Ying Y, Li Y, Eyo UB, Chen T, Zheng J, et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci. 2019;22:1771–81.
pubmed: 31636449
pmcid: 6858573
doi: 10.1038/s41593-019-0511-3
Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci. 2019;22:1782–92.
pubmed: 31636451
pmcid: 6875777
doi: 10.1038/s41593-019-0514-0
Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun. 2016;7:12540.
pubmed: 27558646
pmcid: 5007295
doi: 10.1038/ncomms12540
Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23:1018–27.
pubmed: 28886007
doi: 10.1038/nm.4397
Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13:1118–28.
pubmed: 23023392
pmcid: 3558276
doi: 10.1038/ni.2419
Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol. 2015;33:643–75.
pubmed: 25861979
doi: 10.1146/annurev-immunol-032414-112220
Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013;342:1242974.
pubmed: 24264994
doi: 10.1126/science.1242974
Schafer DP, Stevens B. Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol. 2015;7:a020545.
pubmed: 26187728
pmcid: 4588063
doi: 10.1101/cshperspect.a020545
Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2017;18:225–42.
pubmed: 29151590
doi: 10.1038/nri.2017.125
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. 2018;48:380–395.e6.
pubmed: 29426702
doi: 10.1016/j.immuni.2018.01.011
Tay TL, Sagar, Dautzenberg J, Grün D, Prinz M. Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathol. Commun.2018;6:87
pubmed: 30185219
pmcid: 6123921
doi: 10.1186/s40478-018-0584-3
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159:1312–26.
pubmed: 25480296
pmcid: 4437213
doi: 10.1016/j.cell.2014.11.018
Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Hayden Gephart M, et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron. 2018;98:1170–1183.e8.
pubmed: 29861285
pmcid: 6023731
doi: 10.1016/j.neuron.2018.05.014
Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44:439–49.
pubmed: 26982352
doi: 10.1016/j.immuni.2016.02.024
Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E, et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med. 2018;215:1627–47.
pubmed: 29643186
pmcid: 5987928
doi: 10.1084/jem.20180247
Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845.
pubmed: 30451869
pmcid: 6242869
doi: 10.1038/s41467-018-07295-7
Hohsfield LA, Najafi AR, Ghorbanian Y, Soni N, Hingco EE, Kim SJ, et al. Effects of long-term and brain-wide colonization of peripheral bone marrow-derived myeloid cells in the CNS. J Neuroinflammation. 2020;17:279.
pubmed: 32951604
pmcid: 7504855
doi: 10.1186/s12974-020-01931-0
Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–51.
pubmed: 25470051
doi: 10.1038/nature13989
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.
pubmed: 20966214
pmcid: 3719181
doi: 10.1126/science.1194637
Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42:665–78.
pubmed: 25902481
pmcid: 4545768
doi: 10.1016/j.immuni.2015.03.011
Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80.
pubmed: 23334579
doi: 10.1038/nn.3318
Frost JL, Schafer DP. Microglia: architects of the developing nervous system. Trends Cell Biol. 2016;26:587–97.
pubmed: 27004698
pmcid: 4961529
doi: 10.1016/j.tcb.2016.02.006
Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7:483–95.
pubmed: 20887954
pmcid: 4008496
doi: 10.1016/j.stem.2010.08.014
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.
pubmed: 22632727
pmcid: 3528177
doi: 10.1016/j.neuron.2012.03.026
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.
pubmed: 21778362
doi: 10.1126/science.1202529
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.
pubmed: 18083105
doi: 10.1016/j.cell.2007.10.036
Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science. 2020;367:688–94.
pubmed: 32029629
doi: 10.1126/science.aaz2288
Han RT, Kim RD, Molofsky AV, Liddelow SA. Astrocyte-immune cell interactions in physiology and pathology. Immunity. 2021;54:211–24.
pubmed: 33567261
doi: 10.1016/j.immuni.2021.01.013
Liddelow SA, Marsh SE, Stevens B. Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol. 2020;41:820–35.
pubmed: 32819809
doi: 10.1016/j.it.2020.07.006
Vainchtein ID, Molofsky AV. Astrocytes and microglia: in sickness and in health. Trends Neurosci. 2020;43:144–54.
pubmed: 32044129
pmcid: 7472912
doi: 10.1016/j.tins.2020.01.003
Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46:957–67.
pubmed: 28636962
doi: 10.1016/j.immuni.2017.06.006
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.
pubmed: 28099414
pmcid: 5404890
doi: 10.1038/nature21029
Guttenplan KA, Weigel MK, Adler DI, Couthouis J, Liddelow SA, Gitler AD, et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun. 2020;11:3753.
pubmed: 32719333
pmcid: 7385161
doi: 10.1038/s41467-020-17514-9
Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24:931–8.
pubmed: 29892066
pmcid: 6039259
doi: 10.1038/s41591-018-0051-5
Guttenplan KA, Stafford BK, El-Danaf RN, Adler DI, Münch AE, Weigel MK, et al. Neurotoxic reactive astrocytes drive neuronal death after retinal injury. Cell Rep. 2020;31:107776.
pubmed: 32579912
pmcid: 8091906
doi: 10.1016/j.celrep.2020.107776
Sterling JK, Adetunji MO, Guttha S, Bargoud AR, Uyhazi KE, Ross AG, et al. GLP-1 receptor agonist NLY01 reduces retinal inflammation and neuron death secondary to ocular hypertension. Cell Rep. 2020;33:108271.
pubmed: 33147455
pmcid: 7660987
doi: 10.1016/j.celrep.2020.108271
Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA. 2018;115:E1896–E1905.
pubmed: 29437957
pmcid: 5828643
doi: 10.1073/pnas.1800165115
McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation. 2008;5:45.
pubmed: 18925972
pmcid: 2577641
doi: 10.1186/1742-2094-5-45
Benoit ME, Clarke EV, Morgado P, Fraser DA, Tenner AJ. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J Immunol. 2012;188:5682–93.
pubmed: 22523386
doi: 10.4049/jimmunol.1103760
Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, et al. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2021;20:102763.
pubmed: 33482337
doi: 10.1016/j.autrev.2021.102763
Miron VE. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J Leukoc Biol. 2017;101:1103–8.
pubmed: 28250011
doi: 10.1189/jlb.3RI1116-494R
Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES, Stanley ER, et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 2017;134:441–58.
pubmed: 28685323
pmcid: 5951721
doi: 10.1007/s00401-017-1747-1
Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci. 2014;34:2231–43.
pubmed: 24501362
pmcid: 3913870
doi: 10.1523/JNEUROSCI.1619-13.2014
Wlodarczyk A, Holtman IR, Krueger M, Yogev N, Bruttger J, Khorooshi R, et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 2017;36:3292–308.
pubmed: 28963396
pmcid: 5686552
doi: 10.15252/embj.201696056
Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995–8.
pubmed: 27294511
pmcid: 7116794
doi: 10.1038/nn.4325
Safaiyan S, Besson-Girard S, Kaya T, Cantuti-Castelvetri L, Liu L, Ji H, et al. White matter aging drives microglial diversity. Neuron. 2021;109:1100–1117.e10.
pubmed: 33606969
doi: 10.1016/j.neuron.2021.01.027
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16:1211–8.
pubmed: 23872599
pmcid: 3977045
doi: 10.1038/nn.3469
Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN, et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell. 2019;176:43–55. e13
pubmed: 30528430
doi: 10.1016/j.cell.2018.10.049
Yin Z, Raj D, Saiepour N, Van Dam D, Brouwer N, Holtman IR, et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging. 2017;55:115–22.
pubmed: 28434692
doi: 10.1016/j.neurobiolaging.2017.03.021
Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry. 2017;22:1576–84.
pubmed: 27400854
doi: 10.1038/mp.2016.103
Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.
pubmed: 24487234
doi: 10.1038/nn.3641
Xu Z-X, Kim GH, Tan JW, Riso AE, Sun Y, Xu EY, et al. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat Commun. 2020;11:1797.
pubmed: 32286273
pmcid: 7156673
doi: 10.1038/s41467-020-15530-3
Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez MX, et al. Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci. 2015;35:9977–89.
pubmed: 26156998
pmcid: 4495246
doi: 10.1523/JNEUROSCI.0336-15.2015
Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain. 2016;139:1265–81.
pubmed: 26921617
pmcid: 5006229
doi: 10.1093/brain/aww016
Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011;6:e26317.
pubmed: 22046273
pmcid: 3203114
doi: 10.1371/journal.pone.0026317
Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99:111–20.
pubmed: 11756160
doi: 10.1182/blood.V99.1.111
Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, Wollscheid-Lengeling E, et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun. 2019;10:3215.
pubmed: 31324781
pmcid: 6642117
doi: 10.1038/s41467-019-11053-8
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun. 2019;10:3758.
pubmed: 31434879
pmcid: 6704256
doi: 10.1038/s41467-019-11674-z
Liu Y-J, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J Neurosci. 2021;41:1274–87.
pubmed: 33380470
pmcid: 7888230
doi: 10.1523/JNEUROSCI.2140-20.2020
Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington’s disease. Brain. 2020;143:266–88.
pubmed: 31848580
doi: 10.1093/brain/awz363
Najafi AR, Crapser J, Jiang S, Ng W, Mortazavi A, West BL, et al. A limited capacity for microglial repopulation in the adult brain. Glia. 2018;66:2385–96.
pubmed: 30370589
pmcid: 6269202
doi: 10.1002/glia.23477
Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y, Leach JB, et al. Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci. 2020;40:2960–74.
pubmed: 32094203
pmcid: 7117897
doi: 10.1523/JNEUROSCI.2402-19.2020
Rice RA, Pham J, Lee RJ, Najafi AR, West BL, Green KN. Microglial repopulation resolves inflammation and promotes brain recovery after injury. Glia. 2017;65:931–44.
pubmed: 28251674
pmcid: 5395311
doi: 10.1002/glia.23135
Elmore MRP, Hohsfield LA, Kramár EA, Soreq L, Lee RJ, Pham ST, et al. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell. 2018;17:e12832.
pubmed: 30276955
pmcid: 6260908
doi: 10.1111/acel.12832
Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY, et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncol. 2015;18:557–64.
pubmed: 26449250
pmcid: 4799682
doi: 10.1093/neuonc/nov245
Shi Y, Manis M, Long J, Wang K, Sullivan PM, Remolina Serrano J, et al. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J Exp Med. 2019;216:2546–61.
pubmed: 31601677
pmcid: 6829593
doi: 10.1084/jem.20190980
Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI. CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci USA. 2020;117:23336–8.
pubmed: 32900927
pmcid: 7519218
doi: 10.1073/pnas.1922788117
Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499.
pubmed: 27139776
pmcid: 4857403
doi: 10.1038/ncomms11499
Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 2014;9:2124–38.
pubmed: 25497089
pmcid: 4617309
doi: 10.1016/j.celrep.2014.11.018
Wheeler DL, Sariol A, Meyerholz DK, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Investig. 2018;128:931–43.
pubmed: 29376888
pmcid: 5824854
doi: 10.1172/JCI97229
Hilla AM, Diekmann H, Fischer D. Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury. J Neurosci. 2017;37:6113–24.
pubmed: 28539419
pmcid: 6596505
doi: 10.1523/JNEUROSCI.0584-17.2017
Bellver-Landete, V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle ME, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.
Ohno H, Kubo K, Murooka H, Kobayashi Y, Nishitoba T, Shibuya M, et al. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol Cancer Ther. 2006;5:2634–43.
pubmed: 17121910
doi: 10.1158/1535-7163.MCT-05-0313
Dityatev A, Seidenbecher CI, Schachner M. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci. 2010;33:503–12.
pubmed: 20832873
doi: 10.1016/j.tins.2010.08.003
Schafer DP, Lehrman EK, Stevens B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia. 2013;61:24–36.
pubmed: 22829357
doi: 10.1002/glia.22389
Tremblay, M-È, Lowery R L, Majewska A K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010;8:e1000527.
Crapser JD, Spangenberg EE, Barahona RA, Arreola MA, Hohsfield LA, Green KN. Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain. EBioMedicine. 2020;58:102919.
pubmed: 32745992
pmcid: 7399129
doi: 10.1016/j.ebiom.2020.102919
Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell. 2020;182:388–403. e15
pubmed: 32615087
pmcid: 7497728
doi: 10.1016/j.cell.2020.05.050
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal nets: plasticity, protection, and therapeutic potential. Trends Neurosci. 2019;42:458–70.
pubmed: 31174916
doi: 10.1016/j.tins.2019.04.003
Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci. 2003;4:456–68.
pubmed: 12778118
doi: 10.1038/nrn1115
Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019;20:451–65.
pubmed: 31263252
doi: 10.1038/s41583-019-0196-3
Bikbaev A, Frischknecht R, Heine M. Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep. 2015;5:14527.
pubmed: 26417723
pmcid: 4586818
doi: 10.1038/srep14527
Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998;21:207–15.
pubmed: 9610885
doi: 10.1016/S0166-2236(98)01261-2
Hrabetová S, Masri D, Tao L, Xiao F, Nicholson C. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC. J Physiol. 2009;587:4029–49.
pubmed: 19546165
pmcid: 2756436
doi: 10.1113/jphysiol.2009.170092
Morawski M, Reinert T, Meyer-Klaucke W, Wagner FE, Tröger W, Reinert A, et al. Ion exchanger in the brain: quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Sci Rep. 2015;5:16471.
pubmed: 26621052
pmcid: 4664884
doi: 10.1038/srep16471
Bekku Y, Vargová L, Goto Y, Vorísek I, Dmytrenko L, Narasaki M, et al. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J Neurosci. 2010;30:3113–23.
pubmed: 20181608
pmcid: 6633924
doi: 10.1523/JNEUROSCI.5598-09.2010
Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci. 2009;12:897–904.
pubmed: 19483686
doi: 10.1038/nn.2338
Cingolani LA, Thalhammer A, Yu LM, Catalano M, Ramos T, Colicos MA, et al. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by beta3 integrins. Neuron. 2008;58:749–62.
pubmed: 18549786
pmcid: 2446609
doi: 10.1016/j.neuron.2008.04.011
Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci. 2007;27:10165–75.
pubmed: 17881522
pmcid: 6672660
doi: 10.1523/JNEUROSCI.1772-07.2007
Ohtake Y, Wong D, Abdul-Muneer PM, Selzer ME, Li S. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons. Sci Rep. 2016;6:37152.
pubmed: 27849007
pmcid: 5111048
doi: 10.1038/srep37152
Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, et al. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur J Neurosci. 2005;21:378–90.
pubmed: 15673437
doi: 10.1111/j.1460-9568.2005.03876.x
Pearson CS, Mencio CP, Barber AC, Martin KR, Geller HM. Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. Elife. 2018;7:7.
doi: 10.7554/eLife.37139
Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci. 2011;31:14051–66.
pubmed: 21976490
pmcid: 3220601
doi: 10.1523/JNEUROSCI.1737-11.2011
Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, et al. PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science. 2009;326:592–6.
pubmed: 19833921
pmcid: 2811318
doi: 10.1126/science.1178310
Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci. 2003;22:319–30.
pubmed: 12691734
doi: 10.1016/S1044-7431(02)00035-0
Keough MB, Rogers JA, Zhang P, Jensen SK, Stephenson EL, Chen T, et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nat Commun. 2016;7:11312.
pubmed: 27115988
pmcid: 4853428
doi: 10.1038/ncomms11312
Pendleton JC, Shamblott MJ, Gary DS, Belegu V, Hurtado A, Malone ML. et al. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ. Exp Neurol. 2013;247:113–21.
pubmed: 23588220
doi: 10.1016/j.expneurol.2013.04.003
Lau LW, Cua R, Keough MB, Haylock-Jacobs S, Yong VW. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci. 2013;14:722–9.
pubmed: 23985834
doi: 10.1038/nrn3550
Galindo LT, Mundim M, Pinto AS, Chiarantin G, Almeida M, Lamers ML, et al. Chondroitin sulfate impairs neural stem cell migration through ROCK activation. Mol Neurobiol. 2018;55:3185–95.
pubmed: 28477140
doi: 10.1007/s12035-017-0565-8
Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature. 1997;390:680–3.
pubmed: 9414159
doi: 10.1038/37776
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5:146–56.
pubmed: 14735117
doi: 10.1038/nrn1326
Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7:617–27.
pubmed: 16858390
pmcid: 2693386
doi: 10.1038/nrn1956
Davies SJ, Goucher DR, Doller C, Silver J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci. 1999;19:5810–22.
pubmed: 10407022
pmcid: 6783087
doi: 10.1523/JNEUROSCI.19-14-05810.1999
Schäfer MKE, Tegeder I. NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biol. 2018;68-69:571–88.
pubmed: 29054751
doi: 10.1016/j.matbio.2017.10.002
Nakanishi K, Aono S, Hirano K, Kuroda Y, Ida M, Tokita Y, et al. Identification of neurite outgrowth-promoting domains of neuroglycan C, a brain-specific chondroitin sulfate proteoglycan, and involvement of phosphatidylinositol 3-kinase and protein kinase C signaling pathways in neuritogenesis. J Biol Chem. 2006;281:24970–8.
pubmed: 16803884
doi: 10.1074/jbc.M601498200
Liddelow SA, Barres BA. Not everything is scary about a glial scar. Nature. 2016;532:182–3.
pubmed: 27027287
doi: 10.1038/nature17318
Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200.
pubmed: 27027288
pmcid: 5243141
doi: 10.1038/nature17623
Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 2008;28:7231–43.
pubmed: 18614693
pmcid: 2583788
doi: 10.1523/JNEUROSCI.1709-08.2008
Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23:297–308.
pubmed: 10399936
doi: 10.1016/S0896-6273(00)80781-3
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun. 2019;10:3879.
pubmed: 31462640
pmcid: 6713740
doi: 10.1038/s41467-019-11707-7
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24:2143–55.
pubmed: 14999065
pmcid: 6730429
doi: 10.1523/JNEUROSCI.3547-03.2004
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410.
pubmed: 22553043
pmcid: 3480225
doi: 10.1523/JNEUROSCI.6221-11.2012
Silvestri L, Baker JR, Rodén L, Stroud RM. The C1q inhibitor in serum is a chondroitin 4-sulfate proteoglycan. J Biol Chem. 1981;256:7383–7.
pubmed: 6788768
doi: 10.1016/S0021-9258(19)68974-X
Ghorbani, S, Yong, VW. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain 2021. https://doi.org/10.1093/brain/awab059 .
Gaudet AD, Popovich PG. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol. 2014;258:24–34.
pubmed: 25017885
doi: 10.1016/j.expneurol.2013.11.020
Raposo C, Schwartz M. Glial scar and immune cell involvement in tissue remodeling and repair following acute CNS injuries. Glia. 2014;62:1895–904.
pubmed: 24756949
doi: 10.1002/glia.22676
Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. 2008;5:e171.
pubmed: 18715114
pmcid: 2517615
doi: 10.1371/journal.pmed.0050171
Rolls A, Cahalon L, Bakalash S, Avidan H, Lider O, Schwartz M. A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. FASEB J. 2006;20:547–9.
pubmed: 16396993
doi: 10.1096/fj.05-4540fje
Rolls A, Avidan H, Cahalon L, Schori H, Bakalash S, Litvak V, et al. A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice. Eur J Neurosci. 2004;20:1973–83.
pubmed: 15450076
doi: 10.1111/j.1460-9568.2004.03676.x
Ebert S, Schoeberl T, Walczak Y, Stoecker K, Stempfl T, Moehle C, et al. Chondroitin sulfate disaccharide stimulates microglia to adopt a novel regulatory phenotype. J Leukoc Biol. 2008;84:736–40.
pubmed: 18550791
doi: 10.1189/jlb.0208138
Smolders SM, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: brain cells on the move. Prog Neurobiol. 2019;178:101612.
pubmed: 30954517
doi: 10.1016/j.pneurobio.2019.04.001
Milner R, Campbell IL. Cytokines regulate microglial adhesion to laminin and astrocyte extracellular matrix via protein kinase C-dependent activation of the α6β1 integrin. J Neurosci. 2002;22:1562–72.
pubmed: 11880486
pmcid: 6758899
doi: 10.1523/JNEUROSCI.22-05-01562.2002
Milner R, Campbell IL. The extracellular matrix and cytokines regulate microglial integrin expression and activation. J Immunol. 2003;170:3850–8.
pubmed: 12646653
doi: 10.4049/jimmunol.170.7.3850
Syková E. The extracellular space in the CNS: its regulation, volume, and geometry in normal and pathological neuronal function. Neuroscientist. 1997;3:28–41.
doi: 10.1177/107385849700300113
Song I, Dityatev A. Crosstalk between glia, extracellular matrix, and neurons. Brain Res Bull. 2018;136:101–8.
pubmed: 28284900
doi: 10.1016/j.brainresbull.2017.03.003
Jones LL, Tuszynski MH. Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J Neurosci. 2002;22:4611–24.
pubmed: 12040068
pmcid: 6758783
doi: 10.1523/JNEUROSCI.22-11-04611.2002
Vitellaro-Zuccarello L, De Biasi S, Spreafico R.One hundred years of Golgi’s “perineuronal net”: history of a denied structure.Ital J Neurol Sci. 1998;19:249–53.
pubmed: 10933466
doi: 10.1007/BF02427613
Rossier J, Bernard A, Cabungcal JH, Perrenoud Q, Savoye A, Gallopin T, et al. Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15, and Neprilysin. Mol Psychiatry. 2015;20:154–61.
pubmed: 25510509
doi: 10.1038/mp.2014.162
Lensjø, KK, Christensen A C, Tennøe S, Fyhn M, Hafting T. Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse. eNeuro. 2017;4:ENEURO.0379-16.2017.
Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM. Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J Neurosci. 2016;36:6312–20.
pubmed: 27277807
pmcid: 4899529
doi: 10.1523/JNEUROSCI.0245-16.2016
Morikawa S, Ikegaya Y, Narita M, Tamura H. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval. Sci Rep. 2017;7:46024.
pubmed: 28378772
pmcid: 5380958
doi: 10.1038/srep46024
Wegner F, Härtig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W, et al. Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABAA receptor α1 subunit form a unique entity in rat cerebral cortex. Exp Neurol. 2003;184:705–14.
pubmed: 14769362
doi: 10.1016/S0014-4886(03)00313-3
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–51.
pubmed: 12424383
doi: 10.1126/science.1072699
Rowlands D, Lensjø KK, Dinh T, Yang S, Andrews MR, Hafting T, et al. Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci. 2018;38:10102–13.
pubmed: 30282728
pmcid: 6596198
doi: 10.1523/JNEUROSCI.1122-18.2018
Boggio EM, Ehlert EM, Lupori L, Moloney EB, De Winter F, Vander Kooi CW, et al. Inhibition of semaphorin3A promotes ocular dominance plasticity in the adult rat visual cortex. Mol Neurobiol. 2019;56:5987–97.
pubmed: 30706367
doi: 10.1007/s12035-019-1499-0
Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J Neurosci. 2017;37:1269–83.
pubmed: 28039374
pmcid: 6596863
doi: 10.1523/JNEUROSCI.2504-16.2016
Tsien RY. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci. 2013;110:12456–61.
pubmed: 23832785
pmcid: 3725115
doi: 10.1073/pnas.1310158110
Banerjee SB, Gutzeit VA, Baman J, Aoued HS, Doshi NK, Liu RC, et al. Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron. 2017;95:169–179.e3.
pubmed: 28648500
pmcid: 5548423
doi: 10.1016/j.neuron.2017.06.007
Shi W, Wei X, Wang X, Du S, Liu W, Song J, et al. Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons. Proc Natl Acad Sci. 2019;116:27063–27073.
pmcid: 6936502
doi: 10.1073/pnas.1902680116
Thompson EH, Lensjø KK, Wigestrand MB, Malthe-Sørenssen A, Hafting T, Fyhn M. Removal of perineuronal nets disrupts recall of a remote fear memory. Proc Natl Acad Sci USA. 2018;115:607–12.
pubmed: 29279411
doi: 10.1073/pnas.1713530115
Christensen AC, Lensjø KK, Lepperød ME, Dragly SA, Sutterud H, Blackstad JS, et al. Perineuronal nets stabilize the grid cell network. Nat Commun. 2021;12:253.
pubmed: 33431847
pmcid: 7801665
doi: 10.1038/s41467-020-20241-w
Carulli D, Broersen R, de Winter F, Muir EM, Mešković M, de Waal M, et al. Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proc Natl Acad Sci USA. 2020;117:6855–65.
pubmed: 32152108
pmcid: 7104182
doi: 10.1073/pnas.1916163117
Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA. 2013;110:9130–5.
pubmed: 23671099
pmcid: 3670388
doi: 10.1073/pnas.1300454110
Miyata S, Nishimura Y, Nakashima T. Perineuronal nets protect against amyloid beta-protein neurotoxicity in cultured cortical neurons. Brain Res. 2007;1150:200–6.
pubmed: 17397805
doi: 10.1016/j.brainres.2007.02.066
Balmer, TS. Perineuronal nets enhance the excitability of fast-spiking neurons. eNeuro 2016;3:ENEURO.0112-16.2016.
Dityatev A, Brückner G, Dityateva G, Grosche J, Kleene R, Schachner M. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol. 2007;67:570–88.
pubmed: 17443809
doi: 10.1002/dneu.20361
Tewari BP, Chaunsali L, Campbell SL, Patel DC, Goode AE, Sontheimer H. Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat Commun. 2018;9:4724.
pubmed: 30413686
pmcid: 6226462
doi: 10.1038/s41467-018-07113-0
Blosa M, Sonntag M, Jäger C, Weigel S, Seeger J, Frischknecht R, et al. The extracellular matrix molecule brevican is an integral component of the machinery mediating fast synaptic transmission at the calyx of Held. J Physiol. 2015;593:4341–60.
pubmed: 26223835
pmcid: 4594243
doi: 10.1113/JP270849
Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sánchez-Aguilera A, Mantoan L, et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron. 2017;95:639–655.e10.
pubmed: 28712654
doi: 10.1016/j.neuron.2017.06.028
Gottschling C, Wegrzyn D, Denecke B, Faissner A. Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican, and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep. 2019;9:13939.
pubmed: 31558805
pmcid: 6763627
doi: 10.1038/s41598-019-50404-9
Geissler M, Gottschling C, Aguado A, Rauch U, Wetzel CH, Hatt H, et al. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J Neurosci. 2013;33:7742–55.
pubmed: 23637166
pmcid: 6618965
doi: 10.1523/JNEUROSCI.3275-12.2013
Frischknecht R, Seidenbecher CI. Brevican: a key proteoglycan in the perisynaptic extracellular matrix of the brain. Int J Biochem Cell Biol. 2012;44:1051–4.
pubmed: 22537913
doi: 10.1016/j.biocel.2012.03.022
Franklin SL, Love S, Greene JR, Betmouni S. Loss of perineuronal net in ME7 prion disease. J Neuropathol Exp Neurol. 2008;67:189–99.
pubmed: 18344910
doi: 10.1097/NEN.0b013e3181654386
Bitanihirwe BKY, Woo T-UW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev. 2014;45:85–99.
pubmed: 24709070
pmcid: 4447499
doi: 10.1016/j.neubiorev.2014.03.018
Belichenko PV, Miklossy J, Celio MR. HIV-I induced destruction of neocortical extracellular matrix components in AIDS victims. Neurobiol Dis. 1997;4:301–10.
pubmed: 9361307
doi: 10.1006/nbdi.1997.0143
Gray E, Thomas TL, Betmouni S, Scolding N, Love S. Elevated matrix metalloproteinase-9 and degradation of perineuronal nets in cerebrocortical multiple sclerosis plaques. J Neuropathol Exp Neurol. 2008;67:888–99.
pubmed: 18716555
doi: 10.1097/NEN.0b013e318183d003
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87:493–506.
pubmed: 8898202
doi: 10.1016/S0092-8674(00)81369-0
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–40.
pubmed: 17021169
pmcid: 6674618
doi: 10.1523/JNEUROSCI.1202-06.2006
Chitu V, Gokhan S, Gulinello M, Branch CA, Patil M, Basu R, et al. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP). Neurobiol Dis. 2015;74:219–28.
pubmed: 25497733
doi: 10.1016/j.nbd.2014.12.001
Biundo F, Chitu V, Shlager G, Park ES, Gulinello ME, Saha K, et al. Microglial reduction of colony stimulating factor-1 receptor expression is sufficient to confer adult onset leukodystrophy. Glia. 2021;69:779–91.
pubmed: 33079443
doi: 10.1002/glia.23929
Arreola MA, Soni N, Crapser JD, Hohsfield LA, Elmore MRP, Matheos DP, et al. Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R+/− mouse model of ALSP which can be rescued via CSF1R inhibitors. Science Advances. In Press.
Venturino, A, Schulz R., De Jesús-Cortés H., Maes M.E., Nagy B., Reilly-Andújar F., et al. Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain. Cell Rep. 2021;36:109313.
Belichenko PV, Miklossy J, Belser B, Budka H, Celio MR. Early destruction of the extracellular matrix around parvalbumin-immunoreactive interneurons in Creutzfeldt−Jakob disease. Neurobiol Dis. 1999;6:269–79.
pubmed: 10448054
doi: 10.1006/nbdi.1999.0245
Borner R, Bento-Torres J, Souza DR, Sadala DB, Trevia N, Farias JA, et al. Early behavioral changes and quantitative analysis of neuropathological features in murine prion disease: stereological analysis in the albino Swiss mice model. Prion. 2011;5:215–27.
pubmed: 21862877
pmcid: 3226049
doi: 10.4161/pri.5.3.16936
Bozzelli PL, Caccavano A, Avdoshina V, Mocchetti I, Wu JY, Conant K. Increased matrix metalloproteinase levels and perineuronal net proteolysis in the HIV-infected brain; relevance to altered neuronal population dynamics. Exp Neurol. 2020;323:113077.
pubmed: 31678140
doi: 10.1016/j.expneurol.2019.113077
Medina-Flores R, Wang G, Bissel SJ, Murphey-Corb M, Wiley CA. Destruction of extracellular matrix proteoglycans is pervasive in simian retroviral neuroinfection. Neurobiol Dis. 2004;16:604–16.
pubmed: 15262273
doi: 10.1016/j.nbd.2004.04.011
Hobohm C, Günther A, Grosche J, Rossner S, Schneider D, Brückner G. Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. J Neurosci Res. 2005;80:539–48.
pubmed: 15806566
doi: 10.1002/jnr.20459
Quattromani MJ, Pruvost M, Guerreiro C, Backlund F, Englund E, Aspberg A, et al. Extracellular matrix modulation is driven by experience-dependent plasticity during stroke recovery. Mol Neurobiol. 2018;55:2196–213.
pubmed: 28290150
doi: 10.1007/s12035-017-0461-2
Härtig, W, Mages B., Aleithe S., Nitzsche B., Altmann S., Barthel H. et al. Damaged neocortical perineuronal nets due to experimental focal cerebral ischemia in mice, rats and sheep. Front Integr Neurosci. 2017;11:15.
Dzyubenko E, Manrique-Castano D, Kleinschnitz C, Faissner A, Hermann DM. Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. Matrix Biol. 2018;74:121–32.
pubmed: 30092283
doi: 10.1016/j.matbio.2018.08.001
Karetko-Sysa M, Skangiel-Kramska J, Nowicka D. Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death. Exp Neurol. 2011;231:113–26.
pubmed: 21683696
doi: 10.1016/j.expneurol.2011.05.022
Vita, SM., Grayson B E, Grill R J. Acute damage to the blood–brain barrier and perineuronal net integrity in a clinically-relevant rat model of traumatic brain injury. NeuroReport 2020;31:1167−1174.
Wiley CA, Bissel SJ, Lesniak A, Dixon CE, Franks J, Beer Stolz D, et al. Ultrastructure of diaschisis lesions after traumatic brain injury. J Neurotrauma. 2016;33:1866–82.
pubmed: 26914973
pmcid: 5079449
doi: 10.1089/neu.2015.4272
Sánchez-Ventura J, Giménez-Llort L, Penas C, Udina E. Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions, and prevents hyperreflexia after spinal cord injury. Exp Neurol. 2021;336:113533.
pubmed: 33264633
doi: 10.1016/j.expneurol.2020.113533
McRae PA, Baranov E, Rogers SL, Porter BE. Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci. 2012;36:3471–82.
pubmed: 22934955
pmcid: 4058987
doi: 10.1111/j.1460-9568.2012.08268.x
Rankin-Gee EK, McRae PA, Baranov E, Rogers S, Wandrey L, Porter BE. Perineuronal net degradation in epilepsy. Epilepsia. 2015;56:1124–33.
pubmed: 26032766
doi: 10.1111/epi.13026
Reichelt AC, Lemieux CA, Princz-Lebel O, Singh A, Bussey TJ, Saksida LM. Age-dependent and region-specific alteration of parvalbumin neurons, perineuronal nets, and microglia in the mouse prefrontal cortex and hippocampus following obesogenic diet consumption. Sci Rep. 2021;11:5593.
pubmed: 33692414
pmcid: 7970944
doi: 10.1038/s41598-021-85092-x
Baig S, Wilcock GK, Love S. Loss of perineuronal net N-acetylgalactosamine in Alzheimer’s disease. Acta Neuropathol. 2005;110:393–401.
pubmed: 16133543
doi: 10.1007/s00401-005-1060-2
Kobayashi K, Emson PC, Mountjoy CQ. Vicia villosa lectin-positive neurones in human cerebral cortex. Loss in Alzheimer-type dementia. Brain Res. 1989;498:170–4.
pubmed: 2790470
doi: 10.1016/0006-8993(89)90416-2
Cattaud V, Bezzina C, Rey CC, Lejards C, Dahan L, Verret L. Early disruption of parvalbumin expression and perineuronal nets in the hippocampus of the Tg2576 mouse model of Alzheimer’s disease can be rescued by enriched environment. Neurobiol Aging. 2018;72:147–58.
pubmed: 30273829
doi: 10.1016/j.neurobiolaging.2018.08.024
Pantazopoulos H, Woo TU, Lim MP, Lange N, Berretta S. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry. 2010;67:155–66.
pubmed: 20124115
pmcid: 4208310
doi: 10.1001/archgenpsychiatry.2009.196
Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, et al. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry. 2013;74:427–35.
pubmed: 23790226
pmcid: 3752333
doi: 10.1016/j.biopsych.2013.05.007
Pantazopoulos H, Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016:9847696.
pubmed: 26839720
doi: 10.1155/2016/9847696
Hijazi S, Heistek TS, Scheltens P, Neumann U, Shimshek DR, Mansvelder HD, et al. Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer’s disease. Mol Psychiatry. 2020;25:3380–98.
pubmed: 31431685
doi: 10.1038/s41380-019-0483-4
Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149:708–21.
pubmed: 22541439
pmcid: 3375906
doi: 10.1016/j.cell.2012.02.046
Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–5.
pubmed: 27929004
pmcid: 5656389
doi: 10.1038/nature20587
Ali F, Baringer SL, Neal A, Choi EY, Kwan AC. Parvalbumin-positive neuron loss and amyloid-β deposits in the frontal cortex of Alzheimer’s disease-related mice. J Alzheimer’s Dis. 2019;72:1323–39.
doi: 10.3233/JAD-181190
Guentchev M, Groschup MH, Kordek R, Liberski PP, Budka H. Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol. 1998;8:615–23.
pubmed: 9804371
doi: 10.1111/j.1750-3639.1998.tb00188.x
Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol. 2012;22:547–61.
pubmed: 22126211
pmcid: 3639011
doi: 10.1111/j.1750-3639.2011.00557.x
Morawski M, Brückner G, Jäger C, Seeger G, Arendt T. Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer’s disease. Neuroscience. 2010;169:1347–63.
pubmed: 20497908
doi: 10.1016/j.neuroscience.2010.05.022
Brückner G, Hausen D, Härtig W, Drlicek M, Arendt T, Brauer K. Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer’s disease. Neuroscience. 1999;92:791–805.
pubmed: 10426522
doi: 10.1016/S0306-4522(99)00071-8
Lendvai D, Morawski M, Négyessy L, Gáti G, Jäger C, Baksa G, et al. Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer’s disease. Acta Neuropathol. 2013;125:215–29.
pubmed: 22961619
doi: 10.1007/s00401-012-1042-0
Ueno H, Fujii K, Takao K, Suemitsu S, Murakami S, Kitamura N, et al. Alteration of parvalbumin expression and perineuronal nets formation in the cerebral cortex of aged mice. Mol Cell Neurosci. 2019;95:31–42.
pubmed: 30610998
doi: 10.1016/j.mcn.2018.12.008
Mafi AM, Hofer LN, Russ MG, Young JW, Mellott JG. The density of perineuronal nets increases with age in the inferior colliculus in the fischer brown norway rat. Front Aging Neurosci. 2020;12:27.
pubmed: 32116654
pmcid: 7026493
doi: 10.3389/fnagi.2020.00027
Hilbig H, Bidmon HJ, Steingrüber S, Reinke H, Dinse HR. Enriched environmental conditions reverse age-dependent gliosis and losses of neurofilaments and extracellular matrix components but do not alter lipofuscin accumulation in the hindlimb area of the aging rat brain. J Chem Neuroanat. 2002;23:199–209.
pubmed: 11861126
doi: 10.1016/S0891-0618(01)00159-4
Brewton DH, Kokash J, Jimenez O, Pena ER, Razak KA. Age-related deterioration of perineuronal nets in the primary auditory cortex of mice. Front Aging Neurosci. 2016;8:270.
pubmed: 27877127
pmcid: 5099154
doi: 10.3389/fnagi.2016.00270
Miyata S, Nishimura Y, Hayashi N, Oohira A. Construction of perineuronal net-like structure by cortical neurons in culture. Neuroscience. 2005;136:95–104.
pubmed: 16182457
doi: 10.1016/j.neuroscience.2005.07.031
Lander C, Zhang H, Hockfield S. Neurons produce a neuronal cell surface-associated chondroitin sulfate proteoglycan. J Neurosci. 1998;18:174–83.
pubmed: 9412498
pmcid: 6793429
doi: 10.1523/JNEUROSCI.18-01-00174.1998
Fowke TM, Karunasinghe RN, Bai JZ, Jordan S, Gunn AJ, Dean JM. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep. 2017;7:44135.
pubmed: 28287145
pmcid: 5347017
doi: 10.1038/srep44135
Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133:2331–47.
pubmed: 20566484
doi: 10.1093/brain/awq145
Kwok JC, Carulli D, Fawcett JW. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem. 2010;114:1447–59.
pubmed: 20584105
Jäger C, Lendvai D, Seeger G, Brückner G, Matthews RT, Arendt T, et al. Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience. 2013;238:168–84.
pubmed: 23428622
doi: 10.1016/j.neuroscience.2013.02.014
Hohsfield, LA et al. Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. Preprint at bioRxiv https://doi.org/10.1101/2021.02.17.431594 (2021).
Ribot J, Breton R, Calvo CF, Moulard J, Ezan P, Zapata J, et al. Astrocytes close the mouse critical period for visual plasticity. Science. 2021;373:77–81.
pubmed: 34210880
doi: 10.1126/science.abf5273
Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, et al. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep. 2021;36:109362.
pubmed: 34260928
pmcid: 8293628
doi: 10.1016/j.celrep.2021.109362
Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, Hockfield S. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci. 2002;22:7536–47.
pubmed: 12196577
pmcid: 6757962
doi: 10.1523/JNEUROSCI.22-17-07536.2002
Li KW, Hornshaw MP, Van der Schors RC, Watson R, Tate S, Casetta B, et al. Proteomics analysis of rat brain postsynaptic density: implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem. 2004;279:987–1002.
pubmed: 14532281
doi: 10.1074/jbc.M303116200
Seidenbecher CI, Richter K, Rauch U, Fässler R, Garner CC, Gundelfinger ED.Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored Isoforms.J Biol Chem.1995;270:27206–12.
pubmed: 7592978
doi: 10.1074/jbc.270.45.27206
Pintér A, Hevesi Z, Zahola P, Alpár A, Hanics J. Chondroitin sulfate proteoglycan-5 forms perisynaptic matrix assemblies in the adult rat cortex. Cell Signal. 2020;74:109710.
pubmed: 32653642
doi: 10.1016/j.cellsig.2020.109710
Jüttner R, Montag D, Craveiro RB, Babich A, Vetter P, Rathjen FG. Impaired presynaptic function and elimination of synapses at premature stages during postnatal development of the cerebellum in the absence of CALEB (CSPG5/neuroglycan C). Eur J Neurosci. 2013;38:3270–80.
pubmed: 23889129
doi: 10.1111/ejn.12313
Bekku Y, Saito M, Moser M, Fuchigami M, Maehara A, Nakayama M, et al. Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol. 2012;520:1721–36.
pubmed: 22121037
doi: 10.1002/cne.23009
Orlando C, Ster J, Gerber U, Fawcett JW, Raineteau O. Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J Neurosci. 2012;32:18009–17.
pubmed: 23238717
pmcid: 6621736
doi: 10.1523/JNEUROSCI.2406-12.2012
Lendvai D, Morawski M, Brückner G, Négyessy L, Baksa G, Glasz T, et al. Perisynaptic aggrecan-based extracellular matrix coats in the human lateral geniculate body devoid of perineuronal nets. J Neurosci Res. 2012;90:376–87.
pubmed: 21959900
doi: 10.1002/jnr.22761
Blosa M, Sonntag M, Brückner G, Jäger C, Seeger G, Matthews RT, et al. Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body—implications for physiological functions. Neuroscience. 2013;228:215–34.
pubmed: 23069754
doi: 10.1016/j.neuroscience.2012.10.003
Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, et al. Contributions of astrocytes to synapse formation and maturation potential functions of the perisynaptic extracellular matrix. Brain Res Rev. 2010;63:26–38.
pubmed: 20096729
doi: 10.1016/j.brainresrev.2010.01.001
Mitlöhner J, Kaushik R, Niekisch H, Blondiaux A, Gee C E, Happel M F K. et al. Dopamine receptor activation modulates the integrity of the perisynaptic extracellular matrix at excitatory synapses. Cells. 2020;9:260.
Brückner G, Morawski M, Arendt T. Aggrecan-based extracellular matrix is an integral part of the human basal ganglia circuit. Neuroscience. 2008;151:489–504.
pubmed: 18055126
doi: 10.1016/j.neuroscience.2007.10.033
de Vivo L, Landi S, Panniello M, Baroncelli L, Chierzi S, Mariotti L, et al. Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex. Nat Commun. 2013;4:1484.
pubmed: 23403561
doi: 10.1038/ncomms2491
Stoyanov S, Sun W, Düsedau HP, Cangalaya C, Choi I, Mirzapourdelavar H, et al. Attenuation of the extracellular matrix restores microglial activity during the early stage of amyloidosis. Glia. 2021;69:182–200.
pubmed: 32865286
doi: 10.1002/glia.23894
Végh MJ, Heldring CM, Kamphuis W, Hijazi S, Timmerman AJ, Li KW, et al. Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2014;2:76.
pubmed: 24974208
pmcid: 4149201
Howell MD, Bailey LA, Cozart MA, Gannon BM, Gottschall PE. Hippocampal administration of chondroitinase ABC increases plaque-adjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice. Acta Neuropathol Commun. 2015;3:54.
pubmed: 26337292
pmcid: 4559967
doi: 10.1186/s40478-015-0233-z
Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Döring A, Sloka S, et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol. 2012;72:419–32.
pubmed: 23034914
doi: 10.1002/ana.23599
Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron. 2018;100:120–134.e6.
pubmed: 30308165
pmcid: 6314207
doi: 10.1016/j.neuron.2018.09.017
Sobel RA, Ahmed AS. White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol. 2001;60:1198–207.
pubmed: 11764092
doi: 10.1093/jnen/60.12.1198
Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem. 2006;281:17789–800.
pubmed: 16644727
doi: 10.1074/jbc.M600544200
Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2:502–11.
pubmed: 11433375
pmcid: 7097548
doi: 10.1038/35081571
Cross AK, Woodroofe MN. Chemokine modulation of matrix metalloproteinase and TIMP production in adult rat brain microglia and a human microglial cell line in vitro. Glia. 1999;28:183–9.
pubmed: 10559777
doi: 10.1002/(SICI)1098-1136(199912)28:3<183::AID-GLIA2>3.0.CO;2-3
Welser-Alves JV, Crocker SJ, Milner R. A dual role for microglia in promoting tissue inhibitor of metalloproteinase (TIMP) expression in glial cells in response to neuroinflammatory stimuli. J Neuroinflammation. 2011;8:61.
pubmed: 21631912
pmcid: 3120696
doi: 10.1186/1742-2094-8-61
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281:21362–8.
pubmed: 16720574
doi: 10.1074/jbc.M600504200
Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci. 2002;22:920–30.
pubmed: 11826121
pmcid: 6758472
doi: 10.1523/JNEUROSCI.22-03-00920.2002
Nakanishi H. Microglial functions and proteases. Mol Neurobiol. 2003;27:163–76.
pubmed: 12777686
doi: 10.1385/MN:27:2:163
Könnecke H, Bechmann I. The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013;2013:914104
pubmed: 24023566
pmcid: 3759277
doi: 10.1155/2013/914104
Siri A, Knäuper V, Veirana N, Caocci F, Murphy G, Zardi L. Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J Biol Chem. 1995;270:8650–4.
pubmed: 7536739
doi: 10.1074/jbc.270.15.8650
Nakamura H, Fujii Y, Inoki I, Sugimoto K, Tanzawa K, Matsuki H, et al. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem. 2000;275:38885–90.
pubmed: 10986281
doi: 10.1074/jbc.M003875200
Planas AM, Solé S, Justicia C. Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis. 2001;8:834–46.
pubmed: 11592852
doi: 10.1006/nbdi.2001.0435
Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M, Molina CA, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human. Stroke. 2006;37:1399–406.
pubmed: 16690896
doi: 10.1161/01.STR.0000223001.06264.af
Maeda A, Sobel RA. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol. 1996;55:300–9.
pubmed: 8786388
doi: 10.1097/00005072-199603000-00005
Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, del Zoppo GJ. Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. J Immunol. 2007;178:8158–67.
pubmed: 17548654
doi: 10.4049/jimmunol.178.12.8158
Hu F, Ku MC, Markovic D, Dzaye O, Lehnardt S, Synowitz M, et al. Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. Int J Cancer. 2014;135:2569–78.
pubmed: 24752463
pmcid: 4519695
doi: 10.1002/ijc.28908
Markovic DS, Glass R, Synowitz M, Rooijen NV, Kettenmann H. Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol. 2005;64:754–62.
pubmed: 16141784
doi: 10.1097/01.jnen.0000178445.33972.a9
Kelly, E, Russo A S, Jackson C D, Lamantia C E, Majewska A K. Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice. Front Cell Neurosci. 2015;9:369.
Murase S, Lantz CL, Quinlan EM. Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9. eLife. 2017;6:e27345.
pubmed: 28875930
pmcid: 5630258
doi: 10.7554/eLife.27345
Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, et al. Genetic reduction of matrix metalloproteinase-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock-out mice. Cereb Cortex. 2018;28:3951–64.
pubmed: 29040407
doi: 10.1093/cercor/bhx258
Pirbhoy PS, Rais M, Lovelace JW, Woodard W, Razak KA, Binder DK, et al. Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice. J Neurochem. 2020;155:538–58.
pubmed: 32374912
doi: 10.1111/jnc.15037
pmcid: 7644613
Lemarchant S, Pruvost M, Montaner J, Emery E, Vivien D, Kanninen K, et al. ADAMTS proteoglycanases in the physiological and pathological central nervous system. J Neuroinflammation. 2013;10:133–133.
pubmed: 24176075
pmcid: 4228433
doi: 10.1186/1742-2094-10-133
Hamel MG, Mayer J, Gottschall PE. Altered production and proteolytic processing of brevican by transforming growth factor β in cultured astrocytes. J Neurochem. 2005;93:1533–41.
pubmed: 15935069
doi: 10.1111/j.1471-4159.2005.03144.x
Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, et al. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science. 1999;284:1664–6.
pubmed: 10356395
doi: 10.1126/science.284.5420.1664
Cua RC, Lau LW, Keough MB, Midha R, Apte SS, Yong VW. Overcoming neurite-inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. Glia. 2013;61:972–84.
pubmed: 23554135
doi: 10.1002/glia.22489
Lemarchant S, Pomeshchik Y, Kidin I, Kärkkäinen V, Valonen P, Lehtonen S, et al. ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2016;11:10.
pubmed: 26809777
pmcid: 4727317
doi: 10.1186/s13024-016-0078-3
Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J, et al. MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J Neurol Sci. 2010;294:51–6.
pubmed: 20441996
doi: 10.1016/j.jns.2010.04.005
Nakanishi H. Cathepsin regulation on microglial function. Biochim Biophys Acta (BBA)—Proteins Proteom. 2020;1868:140465.
doi: 10.1016/j.bbapap.2020.140465
Ryan RE, Sloane BF, Sameni M, Wood PL. Microglial cathepsin B: an immunological examination of cellular and secreted species. J Neurochem. 1995;65:1035–45.
pubmed: 7643083
doi: 10.1046/j.1471-4159.1995.65031035.x
Petanceska S, Canoll P, Devi LA. Expression of rat cathepsin S in phagocytic cells (∗). J Biol Chem. 1996;271:4403–9.
pubmed: 8626791
doi: 10.1074/jbc.271.8.4403
Hao HP, Doh-Ura K, Nakanishi H. Impairment of microglial responses to facial nerve axotomy in cathepsin S–deficient mice. J Neurosci Res. 2007;85:2196–206.
pubmed: 17539023
doi: 10.1002/jnr.21357
Pantazopoulos, H, Gisabella B, Rexrode L, Benefield D, Yildiz E, Seltzer P, et al. Circadian rhythms of perineuronal net composition. eNeuro. 2020;7:ENEURO.0034-19.2020.
Hoshiko M, Arnoux I, Avignone E, Yamamoto N, Audinat E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci. 2012;32:15106–11.
pubmed: 23100431
pmcid: 6704837
doi: 10.1523/JNEUROSCI.1167-12.2012
Basilico B, Pagani F, Grimaldi A, Cortese B, Di Angelantonio S, Weinhard L, et al. Microglia shape presynaptic properties at developing glutamatergic synapses. Glia. 2019;67:53–67.
pubmed: 30417584
doi: 10.1002/glia.23508
Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN, et al. Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci. 2009;50:4444–51.
pubmed: 19443728
doi: 10.1167/iovs.08-3357
Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci. 1998;95:10896–901.
pubmed: 9724801
pmcid: 27992
doi: 10.1073/pnas.95.18.10896
Bolós M, Perea JR, Terreros-Roncal J, Pallas-Bazarra N, Jurado-Arjona J, Ávila J, et al. Absence of microglial CX3CR1 impairs the synaptic integration of adult-born hippocampal granule neurons. Brain Behav Immun. 2018;68:76–89.
pubmed: 29017970
doi: 10.1016/j.bbi.2017.10.002
Sipe GO, Lowery RL, Tremblay MÈ, Kelly EA, Lamantia CE, Majewska AK. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun. 2016;7:10905.
pubmed: 26948129
pmcid: 4786684
doi: 10.1038/ncomms10905
Easley-Neal C, Foreman O, Sharma N, Zarrin AA, Weimer RM. CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front Immunol. 2019;10:2199.
pubmed: 31616414
pmcid: 6764286
doi: 10.3389/fimmu.2019.02199
Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci. 2012;13:743–57.
pubmed: 23047773
pmcid: 4900464
doi: 10.1038/nrn3320
Gottschall PE, Howell MD. ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol. 2015;44-46:70–76.
pubmed: 25622912
pmcid: 5068130
doi: 10.1016/j.matbio.2015.01.014
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29:3974–80.
pubmed: 19339593
pmcid: 6665392
doi: 10.1523/JNEUROSCI.4363-08.2009
Tremblay MÈ, Zettel ML, Ison JR, Allen PD, Majewska AK. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia. 2012;60:541–58.
pubmed: 22223464
pmcid: 3276747
doi: 10.1002/glia.22287
Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 2013;16:1773–82.
pubmed: 24162655
pmcid: 3973738
doi: 10.1038/nn.3560
Linnartz B, Kopatz J, Tenner AJ, Neumann H. Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J Neurosci. 2012;32:946–52.
pubmed: 22262892
pmcid: 4037907
doi: 10.1523/JNEUROSCI.3830-11.2012
Lim S-H, Park E, You B, Jung Y, Park A-R, Park SG, et al. Neuronal synapse formation induced by microglia and interleukin 10. PLoS One. 2013;8:e81218.
pubmed: 24278397
pmcid: 3838367
doi: 10.1371/journal.pone.0081218
Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.
pubmed: 24360280
pmcid: 4033691
doi: 10.1016/j.cell.2013.11.030
Rubino SJ, Mayo L, Wimmer I, Siedler V, Brunner F, Hametner S, et al. Acute microglia ablation induces neurodegeneration in the somatosensory system. Nat Commun. 2018;9:4578.
pubmed: 30385785
pmcid: 6212411
doi: 10.1038/s41467-018-05929-4
Milinkeviciute G, Henningfield CM, Muniak MA, Chokr SM, Green KN, Cramer KS. Microglia regulate pruning of specialized synapses in the auditory brainstem. Front Neural Circuits. 2019;13:55.
pubmed: 31555101
pmcid: 6722190
doi: 10.3389/fncir.2019.00055
Milinkeviciute, G, Chokr S M, Crame K S. Auditory brainstem deficits from early treatment with a CSF1R inhibitor largely recover with microglial repopulation. eNeuro. 2021;8:ENEURO.0318-20.2021.
Stowell RD, Wong EL, Batchelor HN, Mendes MS, Lamantia CE, Whitelaw BS, et al. Cerebellar microglia are dynamically unique and survey Purkinje neurons in vivo. Dev Neurobiol. 2018;78:627–44.
pubmed: 29285893
pmcid: 6544048
doi: 10.1002/dneu.22572
Kana V, Desland FA, Casanova-Acebes M, Ayata P, Badimon A, Nabel E, et al. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med. 2019;216:2265–81.
pubmed: 31350310
pmcid: 6781012
doi: 10.1084/jem.20182037
Nakayama H, Abe M, Morimoto C, Iida T, Okabe S, Sakimura K, et al. Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the developing cerebellum. Nat Commun. 2018;9:2830.
pubmed: 30026565
pmcid: 6053401
doi: 10.1038/s41467-018-05100-z
Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41:535–47.
pubmed: 14980203
doi: 10.1016/S0896-6273(04)00069-8
Ju¨ttner R, Moré MI, Das D, Babich A, Meier J, Henning M, et al. Impaired synapse function during postnatal development in the absence of CALEB, an EGF-like protein processed by neuronal activity. Neuron. 2005;46:233–45.
doi: 10.1016/j.neuron.2005.02.027
Brückner G, Grosche J, Schmidt S, Härtig W, Margolis RU, Delpech B, et al. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol. 2000;428:616–29.
pubmed: 11077416
doi: 10.1002/1096-9861(20001225)428:4<616::AID-CNE3>3.0.CO;2-K
Aujla PK, Huntley GW. Early postnatal expression and localization of matrix metalloproteinases-2 and -9 during establishment of rat hippocampal synaptic circuitry. J Comp Neurol. 2014;522:1249–63.
pubmed: 24114974
pmcid: 4909053
doi: 10.1002/cne.23468
Schecter RW, Maher EE, Welsh CA, Stevens B, Erisir A, Bear MF. Experience-dependent synaptic plasticity in V1 occurs without microglial CX3CR1. J Neuroscd. 2017;37:10541–53.
doi: 10.1523/JNEUROSCI.2679-16.2017
Ma X, Chen K, Cui Y, Huang G, Nehme A, Zhang L. et al.2020) Depletion of microglia in developing cortical circuits reveals its critical role in glutamatergic synapse development, functional connectivity, and critical period plasticity.J Neurosci Res.2020;98:1968–86.
pubmed: 32594561
doi: 10.1002/jnr.24641
McRae PA, Rocco MM, Kelly G, Brumberg JC, Matthews RT. Sensory deprivation slters aggrecan and perineuronal net expression in the mouse barrel cortex. J Neurosci. 2007;27:5405–13.
pubmed: 17507562
pmcid: 6672348
doi: 10.1523/JNEUROSCI.5425-06.2007
Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, Mondo E, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat Neurosci. 2019;22:1075–88.
pubmed: 31209379
pmcid: 6596419
doi: 10.1038/s41593-019-0419-y
Welsh CA, Stephany CÉ, Sapp RW, Stevens B. Ocular dominance plasticity in binocular primary visual cortex does not require C1q. J Neurosci. 2020;40:769–83.
pubmed: 31801811
pmcid: 6975301
doi: 10.1523/JNEUROSCI.1011-19.2019
Li T, Chiou B, Gilman CK, Luo R, Koshi T, Yu D, et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 2020;39:e104136.
pubmed: 32452062
pmcid: 7429740
Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 2020;39:e105380.
pubmed: 32657463
pmcid: 7429741
doi: 10.15252/embj.2020105380
Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys. 2010;39:407–27.
pubmed: 20192774
doi: 10.1146/annurev.biophys.093008.131234
Favuzzi, E, Huang S, Saldi G A, Binan L, Ibrahim L A, Fernández-Otero M, et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell. 2021;184:4048−4063.e32.
Zamilpa R, Lopez EF, Chiao YA, Dai Q, Escobar GP, Hakala K, et al. Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. Proteomics. 2010;10:2214–23.
pubmed: 20354994
pmcid: 3017347
doi: 10.1002/pmic.200900587
Toth AB, Terauchi A, Zhang LY, Johnson-Venkatesh EM, Larsen DJ, Sutton MA, et al. Synapse maturation by activity-dependent ectodomain shedding of SIRPα. Nat Neurosci. 2013;16:1417–25.
pubmed: 24036914
pmcid: 3820962
doi: 10.1038/nn.3516
Lopez ME, Klein AD, Scott MP. Complement is dispensable for neurodegeneration in Niemann−Pick disease type C. J Neuroinflammation. 2012;9:216.
pubmed: 22985423
pmcid: 3511250
doi: 10.1186/1742-2094-9-216
Kirschfink M, Blase L, Engelmann S, Schwartz-Albiez R. Secreted chondroitin sulfate proteoglycan of human B cell lines binds to the complement protein C1q and inhibits complex formation of C1. J Immunol. 1997;158:1324–31.
pubmed: 9013976
Ma D, Liu S, Lal B, Wei S, Wang S, Zhan D, et al. Extracellular matrix protein tenascin C increases phagocytosis mediated by CD47 loss of function in glioblastoma. Cancer Res. 2019;79:2697–708.
pubmed: 30898840
pmcid: 8218246
doi: 10.1158/0008-5472.CAN-18-3125
Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9:1228.
pubmed: 29581545
pmcid: 5964317
doi: 10.1038/s41467-018-03566-5
Lim TK, Ruthazer ES. Microglial trogocytosis and the complement system regulate axonal pruning in vivo. Elife. 2021;10:e62167.
pubmed: 33724186
pmcid: 7963485
doi: 10.7554/eLife.62167
Reshef R, Kudryavitskaya E, Shani-Narkiss H, Isaacson B, Rimmerman N, Mizrahi A, et al. The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. eLife. 2017;6,:e30809.
doi: 10.7554/eLife.30809
Wallace J, Lord J, Dissing-Olesen L, Stevens B, Murthy VN, et al. Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. Elife. 2020;9:e50531.
pubmed: 32150529
pmcid: 7062469
doi: 10.7554/eLife.50531
Wegrzyn D, Freund N, Faissner A, Juckel G. Poly I:C activated microglia disrupt perineuronal nets and modulate synaptic balance in primary hippocampal neurons in vitro. Front Synaptic Neurosci. 2021;13:637549.
pubmed: 33708102
pmcid: 7940526
doi: 10.3389/fnsyn.2021.637549
Scheff SW, Price DA. Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging. 2003;24:1029–46.
pubmed: 14643375
doi: 10.1016/j.neurobiolaging.2003.08.002
Henstridge CM, Pickett E, Spires-Jones TL. Synaptic pathology: a shared mechanism in neurological disease. Ageing Res Rev. 2016;28:72–84.
pubmed: 27108053
doi: 10.1016/j.arr.2016.04.005
Koffie RM, Hyman BT, Spires-Jones TL. Alzheimer’s disease: synapses gone cold. Mol Neurodegener. 2011;6:63.
pubmed: 21871088
pmcid: 3178498
doi: 10.1186/1750-1326-6-63
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.
doi: 10.1002/ana.410300410
pubmed: 1789684
Henstridge CM, Sideris DI, Carroll E, Rotariu S, Salomonsson S, Tzioras M, et al. Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathol. 2018;135:213–26.
pubmed: 29273900
doi: 10.1007/s00401-017-1797-4
Lee, E, Chung, W-S. Glial control of synapse number in healthy and diseased brain. Front Cell Neurosci. 2019;13:42.
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.
pubmed: 27033548
pmcid: 5094372
doi: 10.1126/science.aad8373
Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med. 2017;9:eaaf6295.
pubmed: 28566429
pmcid: 6936623
doi: 10.1126/scitranslmed.aaf6295
Fonseca MI, Zhou J, Botto M, Tenner AJ. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J Neurosci. 2004;24:6457–65.
pubmed: 15269255
pmcid: 6729885
doi: 10.1523/JNEUROSCI.0901-04.2004
Ding X, Wang J, Huang M, Chen Z, Liu J, Zhang Q, et al. Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration. Nat Commun. 2021;12:2030.
pubmed: 33795678
pmcid: 8016980
doi: 10.1038/s41467-021-22301-1
Shi Q, Colodner KJ, Matousek SB, Merry K, Hong S, Kenison JE, et al. Complement C3-deficient mice fail to display age-related hippocampal decline. J Neurosci. 2015;35:13029–42.
pubmed: 26400934
pmcid: 6605437
doi: 10.1523/JNEUROSCI.1698-15.2015
Socodato R, Portugal CC, Canedo T, Rodrigues A, Almeida TO, Henriques JF, et al. Microglia dysfunction caused by the loss of rhoa disrupts neuronal physiology and leads to neurodegeneration. Cell Rep. 2020;31:107796.
pubmed: 32579923
doi: 10.1016/j.celrep.2020.107796
Cavanagh C, Tse YC, Nguyen HB, Krantic S, Breitner JC, Quirion R, et al. Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol Aging. 2016;47:41–49.
pubmed: 27552480
doi: 10.1016/j.neurobiolaging.2016.07.009
Zhang D, Li S, Hou L, Jing L, Ruan Z, Peng B, et al. Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson’s disease model. J Neuroinflammation. 2021;18:4.
pubmed: 33402167
pmcid: 7786472
doi: 10.1186/s12974-020-02065-z
Azevedo EP, Ledo JH, Barbosa G, Sobrinho M, Diniz L, Fonseca AC, et al. Activated microglia mediate synapse loss and short-term memory deficits in a mouse model of transthyretin-related oculoleptomeningeal amyloidosis. Cell Death Dis. 2013;4:e789.
pubmed: 24008733
pmcid: 3789183
doi: 10.1038/cddis.2013.325
Wilton DK, Dissing-Olesen L, Stevens B. Neuron-glia signaling in synapse elimination. Annu Rev Neurosci. 2019;42:107–27.
pubmed: 31283900
doi: 10.1146/annurev-neuro-070918-050306
Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 2008;60:201–14.
pubmed: 18957214
pmcid: 3691995
doi: 10.1016/j.neuron.2008.10.004
Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102.
pubmed: 18835858
doi: 10.1136/jmg.2008.061796
Sidhu H, Dansie LE, Hickmott PW, Ethell DW, Ethell IM. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867–79.
pubmed: 25057190
pmcid: 4107404
doi: 10.1523/JNEUROSCI.1162-14.2014
Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73.
pubmed: 10632234
doi: 10.1001/archpsyc.57.1.65
Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA. Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology. 2009;34:374–89.
pubmed: 18463626
doi: 10.1038/npp.2008.67
Stavisky SD, Willett FR, Wilson GH, Murphy BA, Rezaii P, Avansino DT, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry. 1998;65:446–53.
doi: 10.1136/jnnp.65.4.446
Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374–85.
pubmed: 30718903
pmcid: 6410571
doi: 10.1038/s41593-018-0334-7
Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.
pubmed: 26814963
pmcid: 4752392
doi: 10.1038/nature16549