Metabolic decisions in development and disease-a Keystone Symposia report.


Journal

Annals of the New York Academy of Sciences
ISSN: 1749-6632
Titre abrégé: Ann N Y Acad Sci
Pays: United States
ID NLM: 7506858

Informations de publication

Date de publication:
12 2021
Historique:
received: 31 07 2021
accepted: 31 07 2021
pubmed: 21 8 2021
medline: 9 2 2022
entrez: 20 8 2021
Statut: ppublish

Résumé

There is an increasing appreciation for the role of metabolism in cell signaling and cell decision making. Precise metabolic control is essential in development, as evident by the disorders caused by mutations in metabolic enzymes. The metabolic profile of cells is often cell-type specific, changing as cells differentiate or during tumorigenesis. Recent evidence has shown that changes in metabolism are not merely a consequence of changes in cell state but that metabolites can serve to promote and/or inhibit these changes. Metabolites can link metabolic pathways with cell signaling pathways via several mechanisms, for example, by serving as substrates for protein post-translational modifications, by affecting enzyme activity via allosteric mechanisms, or by altering epigenetic markers. Unraveling the complex interactions governing metabolism, gene expression, and protein activity that ultimately govern a cell's fate will require new tools and interactions across disciplines. On March 24 and 25, 2021, experts in cell metabolism, developmental biology, and human disease met virtually for the Keystone eSymposium, "Metabolic Decisions in Development and Disease." The discussions explored how metabolites impact cellular and developmental decisions in a diverse range of model systems used to investigate normal development, developmental disorders, dietary effects, and cancer-mediated changes in metabolism.

Identifiants

pubmed: 34414571
doi: 10.1111/nyas.14678
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

55-73

Subventions

Organisme : Medical Research Council
ID : MC_UP_1102/3
Pays : United Kingdom

Informations de copyright

© 2021 New York Academy of Sciences.

Références

Campbell, S.L. & K.E. Wellen. 2018. Metabolic signaling to the nucleus in cancer. Mol. Cell 71: 398-408.
Figlia, G., P. Willnow & A.A. Teleman. 2020. Metabolites regulate cell signaling and growth via covalent modification of proteins. Dev. Cell 54: 156-170.
Baksh, S.C., P.K. Todorova, S. Gur-Cohen, et al. 2020. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat. Cell Biol. 22: 779-790.
Tormos, K.V., E. Anso, R.B. Hamanaka, et al. 2011. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14: 537-544.
Hamanaka, R.B., A. Glasauer, P. Hoover, et al. 2013. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal. 6: ra8.
Kalyanaraman, B. 2017. Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 12: 833-842.
Oginuma, M., P. Moncuquet, F. Xiong, et al. 2017. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40: 342-353.e10.
Bulusu, V., N. Prior, M.T. Snaebjornsson, et al. 2017. Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40: 331-341.e4.
Webb, B.A., M. Chimenti, M.P. Jacobson, et al. 2011. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11: 671-677.
Oginuma, M., Y. Harima, O.A. Tarazona, et al. 2020. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 584: 98-101.
Hoffmeyer, K., D. Junghans, B. Kanzler, et al. 2017. Trimethylation and acetylation of β-catenin at lysine 49 represent key elements in ESC pluripotency. Cell Rep. 18: 2815-2824.
Diaz-Cuadros, M., D.E. Wagner, C. Budjan, et al. 2020. In vitro characterization of the human segmentation clock. Nature 580: 113-118.
Sivanand, S., S. Rhoades, Q. Jiang, et al. 2017. Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol. Cell 67: 252-265.e6.
Trefely, S., C.D. Lovell, N.W. Snyder, et al. 2020. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 38: 100941.
Trefely, S., K. Huber, J. Liu, et al. 2020. Quantitative sub-cellular acyl-CoA analysis reveals distinct nuclear regulation. bioRxiv 2020.07.30.229468.
Wellen, K.E., C. Lu, A. Mancuso, et al. 2010. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 24: 2784-2799.
Ying, H., A.C. Kimmelman, C.A. Lyssiotis, et al. 2012. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-670.
Guillaumond, F., J. Leca, O. Olivares, et al. 2013. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. USA 110: 3919-3924.
Sharma, N.S., V.K. Gupta, V.T. Garrido, et al. 2020. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J. Clin. Invest. 130: 451-465.
Ricciardiello, F., Y. Gang, R. Palorini, et al. 2020. Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation. Oncogene 39: 4103-4117.
Chen, R., L.A. Lai, Y. Sullivan, et al. 2017. Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer. Sci. Rep. 7: 7950.
Campbell, S.L., C. Mesaros, H. Affronti, et al. 2020. Glutamine deprivation triggers NAGK-dependent hexosamine salvage. bioRxiv 2020.09.13.294116.
Kim, P.K., C.J. Halbrook, S.A. Kerk, et al. 2020. Hyaluronic acid fuels pancreatic cancer growth. bioRxiv 2020.09.14.293803.
Carey, B.W., L.W.S. Finley, J.R. Cross, et al. 2015. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518: 413-416.
Vardhana, S.A., P.K. Arnold, B.P. Rosen, et al. 2019. Glutamine independence is a selectable feature of pluripotent stem cells. Nat. Metab. 1: 676-687.
Ezhkova, E., H.A. Pasolli, J.S. Parker, et al. 2009. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136: 1122-1135.
Sen, G.L., D.E. Webster, D.I. Barragan, et al. 2008. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 22: 1865-1870.
San Martín, A., S. Ceballo, F. Baeza-Lehnert, et al. 2014. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS One 9: e85780.
Peroza, E.A., A.-H. Boumezbeur & N. Zamboni. 2015. Rapid, randomized development of genetically encoded FRET sensors for small molecules. Analyst 140: 4540-4548.
Cheng, L.Y., A.P. Bailey, S.J. Leevers, et al. 2011. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 146: 435-447.
Sousa-Nunes, R., L.L. Yee & A.P. Gould. 2011. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471: 508-512.
Bailey, A.P., G. Koster, C. Guillermier, et al. 2015. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163: 340-353.
Lubojemska, A., M.I. Stefana, L. Lampe, et al. 2020. Adipose triglyceride lipase protects the endocytosis of renal cells on a high fat diet in Drosophila. 2020.11.19.390146.
Senyilmaz, D., S. Virtue, X. Xu, et al. 2015. Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature 525: 124-128.
Senyilmaz-Tiebe, D., D.H. Pfaff, S. Virtue, et al. 2018. Dietary stearic acid regulates mitochondria in vivo in humans. Nat. Commun. 9: 3129.
Nůsková, H., M.V. Serebryakova, A. Ferrer-Caelles, et al. 2021. Stearic acid blunts growth-factor signaling via oleoylation of GNAI proteins. Nat. Commun. 12: 4590. doi: 10.1038/s41467-021-24844-9
Lobel, L., Y.G. Cao, K. Fenn, et al. 2020. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 369: 1518-1524.
Hudry, B., S. Khadayate & I. Miguel-Aliaga. 2016. The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530: 344-348.
Reiff, T., J. Jacobson, P. Cognigni, et al. 2015. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. eLife 4: e06930.
Hudry, B., E. de Goeij, A. Mineo, et al. 2019. Sex differences in intestinal carbohydrate metabolism promote food intake and sperm maturation. Cell 178: 901-918.e16.
Demontis, F. & N. Perrimon. 2010. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143: 813-825.
Rajan, A. & N. Perrimon. 2012. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151: 123-137.
Owusu-Ansah, E., W. Song & N. Perrimon. 2013. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155: 699-712.
Demontis, F., V.K. Patel, W.R. Swindell, et al. 2014. Intertissue control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep. 7: 1481-1494.
Song, W., J.A. Veenstra & N. Perrimon. 2014. Control of lipid metabolism by tachykinin in Drosophila. Cell Rep. 9: 40-47.
Kwon, Y., W. Song, I.A. Droujinine, et al. 2015. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33: 36-46.
Song, W., D. Cheng, S. Hong, et al. 2017. Midgut-derived activin regulates glucagon-like action in the fat body and glycemic control. Cell Metab. 25: 386-399.
Song, W., E. Owusu-Ansah, Y. Hu, et al. 2017. Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. Proc. Natl. Acad. Sci. USA 114: 8596-8601.
Rajan, A., B.E. Housden, F. Wirtz-Peitz, et al. 2017. A mechanism coupling systemic energy sensing to adipokine secretion. Dev. Cell 43: 83-98.e6.
Song, W., S. Kir, S. Hong, et al. 2019. Tumor-derived ligands trigger tumor growth and host wasting via differential MEK activation. Dev. Cell 48: 277-286.e6.
Ghosh, A.C., S.G. Tattikota, Y. Liu, et al. 2020. Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity. eLife 9: e56969.
Bäckhed, F., J.K. Manchester, C.F. Semenkovich, et al. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 104: 979-984.
Wang, Y. & L.V. Hooper. 2019. Immune control of the microbiota prevents obesity. Science 365: 316-317.
Wang, Y., Z. Kuang, X. Yu, et al. 2017. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357: 912-916.
Kuang, Z., Y. Wang, Y. Li, et al. 2019. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365: 1428-1434.
Yilmaz, L.S. & A.J.M. Walhout. 2016. A Caenorhabditis elegans genome-scale metabolic network model. Cell Syst. 2: 297-311.
Yilmaz, L.S., X. Li, S. Nanda, et al. 2020. Modeling tissue-relevant Caenorhabditis elegans metabolism at network, pathway, reaction, and metabolite levels. Mol. Syst. Biol. 16: e9649.
Branon, T.C., J.A. Bosch, A.D. Sanchez, et al. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36: 880-887.
Cho, K.F., T.C. Branon, N.D. Udeshi, et al. 2020. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15: 3971-3999.
Weeks, A.M. & J.A. Wells. 2018. Engineering peptide ligase specificity by proteomic identification of ligation sites. Nat. Chem. Biol. 14: 50-57.
Weeks, A.M. & J.A. Wells. 2020. Subtiligase-catalyzed peptide ligation. Chem. Rev. 120: 3127-3160.
Wei, W., N.M. Riley, A.C. Yang, et al. 2021. Cell type-selective secretome profiling in vivo. Nat. Chem. Biol. 17: 326-334.
Rappez, L., M. Stadler, S. Triana, et al. 2021. SpaceM reveals metabolic states of single cells. Nat. Methods 18: 799-805.
Rabinovich, S., L. Adler, K. Yizhak, et al. 2015. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527: 379-383.
Lee, J.S., L. Adler, H. Karathia, et al. 2018. Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures. Cell 174: 1559-1570.e22.
Keshet, R., P. Szlosarek, A. Carracedo, et al. 2018. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer 18: 634-645.
Mülleder, M., F. Capuano, P. Pir, et al. 2012. A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat. Biotechnol. 30: 1176-1178.
Messner, C.B., V. Demichev, D. Wendisch, et al. 2020. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst. 11: 11-24.e4.
Mülleder, M., E. Calvani, M.T. Alam, et al. 2016. Functional metabolomics describes the yeast biosynthetic regulome. Cell 167: 553-565.e12.
Olin-Sandoval, V., J.S.L. Yu, L. Miller-Fleming, et al. 2019. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 572: 249-253.
Campbell, K., J. Vowinckel, M. Mülleder, et al. 2015. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4: e09943.
Zelezniak, A., J. Vowinckel, F. Capuano, et al. 2018. Machine learning predicts the yeast metabolome from the quantitative proteome of kinase knockouts. Cell Syst. 7: 269-283.e6.
Demichev, V., C.B. Messner, S.I. Vernardis, et al. 2020. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17: 41-44.
Messner, C.B., V. Demichev, N. Bloomfield, et al. 2021. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39: 846-854.
Fan, J., J. Ye, J.J. Kamphorst, et al. 2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510: 298-302.
Brown, S., C.M. Pineda, T. Xin, et al. 2017. Correction of aberrant growth preserves tissue homeostasis. Nature 548: 334-337.
Pineda, C.M., D.G. Gonzalez, C. Matte-Martone, et al. 2019. Hair follicle regeneration suppresses Ras-driven oncogenic growth. J. Cell Biol. 218: 3212-3222.
Walsh, A.J., R.S. Cook, H.C. Manning, et al. 2013. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res. 73: 6164-6174.
Horak, M., J. Novak & J. Bienertova-Vasku. 2016. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 410: 1-13.
Wang, J., L.Z. Yang, J.S. Zhang, et al. 2018. Effects of microRNAs on skeletal muscle development. Gene 668: 107-113.
Gutiérrez-Pérez, P., E.M. Santillán, T. Lendl, et al. 2020. A deeply conserved miR-1 dependent regulon supports muscle cell physiology. bioRxiv 2020.08.31.275644.
Ni, M., A. Solmonson, C. Pan, et al. 2019. Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell Rep. 27: 1376-1386.e6.
Pirot, N., M. Crahes, H. Adle-Biassette, et al. 2016. Phenotypic and neuropathological characterization of fetal pyruvate dehydrogenase deficiency. J. Neuropathol. Exp. Neurol. 75: 227-238.
Chakrabarty, R.P. & N.S. Chandel. 2021. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28: 394-408.
Ansó, E., S.E. Weinberg, L.P. Diebold, et al. 2017. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat. Cell Biol. 19: 614-625.
Bricker, D.K., E.B. Taylor, J.C. Schell, et al. 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337: 96-100.
Schell, J.C., K.A. Olson, L. Jiang, et al. 2014. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56: 400-413.
Schell, J.C., D.R. Wisidagama, C. Bensard, et al. 2017. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19: 1027-1036.
Cluntun, A.A., R. Badolia, S. Lettlova, et al. 2021. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 33: 629-648.e10.
Bensard, C.L., D.R. Wisidagama, K.A. Olson, et al. 2020. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 31: 284-300.e7.
Orsak, T., T.L. Smith, D. Eckert, et al. 2012. Revealing the allosterome: systematic identification of metabolite-protein interactions. Biochemistry 51: 225-232.
Dai, Z., V. Ramesh & J.W. Locasale. 2020. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21: 737-753.
Reid, M.A., Z. Dai & J.W. Locasale. 2017. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19: 1298-1306.
Mentch, S.J., M. Mehrmohamadi, L. Huang, et al. 2015. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22: 861-873.
Orentreich, N., J.R. Matias, A. DeFelice, et al. 1993. Low methionine ingestion by rats extends life span. J. Nutr. 123: 269-274.
Gao, X., S.M. Sanderson, Z. Dai, et al. 2019. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572: 397-401.
Shapira, S.N. & H.R. Christofk. 2020. Metabolic regulation of tissue stem cells. Trends Cell Biol. 30: 566-576.
Post, Y. & H. Clevers. 2019. Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell 25: 174-183.
Cimmino, L., B.G. Neel & I. Aifantis. 2018. Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol. 28: 698-708.
Perez-Ramirez, C.A. & H.R. Christofk. 2021. Challenges in studying stem cell metabolism. Cell Stem Cell 28: 409-423.
Nakano, H., I. Minami, D. Braas, et al. 2017. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. eLife 6: e29330.

Auteurs

Jennifer Cable (J)

PhD Science Writer, New York, New York.

Olivier Pourquié (O)

Department of Genetics, Harvard Medical School, Boston, Massachusetts.
Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
Harvard Stem Cell Institute, Boston, Massachusetts.

Kathryn E Wellen (KE)

Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.

Lydia W S Finley (LWS)

Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.

Alexander Aulehla (A)

Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Alex P Gould (AP)

The Francis Crick Institute, London, UK.

Aurelio Teleman (A)

German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany.

William B Tu (WB)

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.

Wendy Sarah Garrett (WS)

Harvard T. H. Chan School of Public Health and Dana-Farber Cancer, Boston, Massachusetts.

Irene Miguel-Aliaga (I)

MRC London Institute of Medical Sciences and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.

Norbert Perrimon (N)

Department of Genetics, Blavatnik Institute, Harvard Medical School and Howard Hughes Institute, Boston, Massachusetts.

Lora V Hooper (LV)

Department of Immunology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas.

A J Marian Walhout (AJM)

Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.

Wei Wei (W)

Department of Pathology, Stanford University School of Medicine, Stanford, California.
Department of Biology and Stanford ChEM-H, Stanford University, Stanford, California.

Theodore Alexandrov (T)

Structural and Computational Biology Unit and Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California.

Ayelet Erez (A)

Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.

Markus Ralser (M)

Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
Department of Biochemistry, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

Joshua D Rabinowitz (JD)

Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.

Anupama Hemalatha (A)

Department of Genetics, Yale School of Medicine, New Haven, Connecticut.

Paula Gutiérrez-Pérez (P)

Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.

Navdeep S Chandel (NS)

Department of Medicine, Robert H. Lurie Cancer Center, Chicago, Illinois.
Department of Biochemistry and Molecular Genetics, Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

Jared Rutter (J)

Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah.

Jason W Locasale (JW)

Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.

Juan C Landoni (JC)

Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.

Heather Christofk (H)

Departments of Biological Chemistry and Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH