Echocardiography-derived septal curvature correlated with invasive hemodynamics in pediatric pulmonary hypertension.
Echocardiography
Pulmonary hypertension
Septal curvature
Journal
Journal of echocardiography
ISSN: 1880-344X
Titre abrégé: J Echocardiogr
Pays: Japan
ID NLM: 101263153
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
20
01
2021
accepted:
10
08
2021
revised:
16
04
2021
pubmed:
21
8
2021
medline:
21
4
2022
entrez:
20
8
2021
Statut:
ppublish
Résumé
Right ventricular function and afterload are associated with clinical outcomes in pulmonary hypertension (PH). MRI-derived interventricular septal curvature has been associated with invasive hemodynamics in PH patients. This study sought to determine the relationship of echocardiography derived septal curvature with invasive hemodynamics in pediatric PH patients. A single center chart review identified 56 pediatric patients with PH and 50 control patients with adequate echocardiography to assess septal curvature within one month of initial cardiac catheterization. Echocardiographic indices of septal flattening including end-systolic eccentricity index (EI PH patients had a median right ventricular systolic pressure of 64 mmHg (interquartile range (IQR) 48-81), mean pulmonary artery pressure of 44 mmHg (IQR 32-57), pulmonary vascular resistance of 7.9 iWU (IQR 4.8-12.9), and pulmonary capillary wedge pressure of 10 mmHg (IQR 8-12). Patients with PH had higher EIs and EI Echocardiography derived septal curvature is a non-invasive marker of ventricular afterload and adverse outcomes.
Sections du résumé
BACKGROUND
Right ventricular function and afterload are associated with clinical outcomes in pulmonary hypertension (PH). MRI-derived interventricular septal curvature has been associated with invasive hemodynamics in PH patients. This study sought to determine the relationship of echocardiography derived septal curvature with invasive hemodynamics in pediatric PH patients.
METHODS
A single center chart review identified 56 pediatric patients with PH and 50 control patients with adequate echocardiography to assess septal curvature within one month of initial cardiac catheterization. Echocardiographic indices of septal flattening including end-systolic eccentricity index (EI
RESULTS
PH patients had a median right ventricular systolic pressure of 64 mmHg (interquartile range (IQR) 48-81), mean pulmonary artery pressure of 44 mmHg (IQR 32-57), pulmonary vascular resistance of 7.9 iWU (IQR 4.8-12.9), and pulmonary capillary wedge pressure of 10 mmHg (IQR 8-12). Patients with PH had higher EIs and EI
CONCLUSIONS
Echocardiography derived septal curvature is a non-invasive marker of ventricular afterload and adverse outcomes.
Identifiants
pubmed: 34415551
doi: 10.1007/s12574-021-00545-6
pii: 10.1007/s12574-021-00545-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24-32Informations de copyright
© 2021. Japanese Society of Echocardiography.
Références
Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. Eur Respir J. 2019;53(1).
Abman SH, Hansmann G, Archer SL, et al. Pediatric pulmonary hypertension: guidelines from the American heart association and American thoracic society. Circulation. 2015;132(21):2037–99.
doi: 10.1161/CIR.0000000000000329
del Cerro Marin MJ, Sabate Rotes A, Rodriguez Ogando A, et al. Assessing pulmonary hypertensive vascular disease in childhood. Data from the Spanish registry. Am J Respir Crit Care Med. 2014;190(12):1421–9.
doi: 10.1164/rccm.201406-1052OC
van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58(24):2511–9.
doi: 10.1016/j.jacc.2011.06.068
Moledina S, Pandya B, Bartsota M, et al. Prognostic significance of cardiac magnetic resonance imaging in children with pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6(3):407–14.
doi: 10.1161/CIRCIMAGING.112.000082
Di Maria MV, Younoszai AK, Mertens L, et al. RV stroke work in children with pulmonary arterial hypertension: estimation based on invasive haemodynamic assessment and correlation with outcomes. Heart. 2014;100(17):1342–7.
doi: 10.1136/heartjnl-2013-305298
Averin K, Michelfelder E, Sticka J, et al. Changes in ventricular geometry predict severity of right ventricular hypertension. Pediatr Cardiol. 2016;37(3):575–81.
doi: 10.1007/s00246-015-1317-z
Burkett DA, Patel SS, Mertens L, et al. Relationship between left ventricular geometry and invasive hemodynamics in pediatric pulmonary hypertension. Circ Cardiovasc Imaging. 2020;13(5): e009825.
doi: 10.1161/CIRCIMAGING.119.009825
Marcus JT, Gan CT, Zwanenburg JJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51(7):750–7.
doi: 10.1016/j.jacc.2007.10.041
Pandya B, Quail MA, Steeden JA, et al. Real-time magnetic resonance assessment of septal curvature accurately tracks acute hemodynamic changes in pediatric pulmonary hypertension. Circ Cardiovasc Imaging. 2014;7(4):706–13.
doi: 10.1161/CIRCIMAGING.113.001156
Bouchard A, Higgins CB, Byrd BF 3rd, et al. Magnetic resonance imaging in pulmonary arterial hypertension. Am J Cardiol. 1985;56(15):938–42.
doi: 10.1016/0002-9149(85)90408-4
Dellegrottaglie S, Sanz J, Poon M, et al. Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology. 2007;243(1):63–9.
doi: 10.1148/radiol.2431060067
Roeleveld RJ, Marcus JT, Faes TJ, et al. Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005;234(3):710–7.
doi: 10.1148/radiol.2343040151
Sciancalepore MA, Maffessanti F, Patel AR, et al. Three-dimensional analysis of interventricular septal curvature from cardiac magnetic resonance images for the evaluation of patients with pulmonary hypertension. Int J Cardiovasc Imaging. 2012;28(5):1073–85.
doi: 10.1007/s10554-011-9913-3
Critser PJ, Higano NS, Lang SM, et al. Cardiovascular magnetic resonance imaging derived septal curvature in neonates with bronchopulmonary dysplasia associated pulmonary hypertension. J Cardiovasc Magn Reson. 2020;22(1):50.
doi: 10.1186/s12968-020-00643-x
King ME, Braun H, Goldblatt A, et al. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation. 1983;68(1):68–75.
doi: 10.1161/01.CIR.68.1.68
Reisner SA, Azzam Z, Halmann M, et al. Septal/free wall curvature ratio: a noninvasive index of pulmonary arterial pressure. J Am Soc Echocardiogr. 1994;7(1):27–35.
doi: 10.1016/S0894-7317(14)80415-X