Episodic defoliation rapidly reduces starch but not soluble sugars in an invasive shrub, Tamarix spp.
biomass allocation
nonstructural carbohydrates
osmoregulation
plant mortality
sap flux density
soluble sugar pools
starch pools
Journal
American journal of botany
ISSN: 1537-2197
Titre abrégé: Am J Bot
Pays: United States
ID NLM: 0370467
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
09
11
2020
accepted:
17
02
2021
pubmed:
21
8
2021
medline:
23
9
2021
entrez:
20
8
2021
Statut:
ppublish
Résumé
Plants rely on pools of internal nonstructural carbohydrates (NSCs: soluble sugars plus starch) to support metabolism, growth, and regrowth of tissues damaged from disturbance such as foliage herbivory. However, impacts of foliage herbivory on the quantity and composition of NSC pools in long-lived woody plants are currently unclear. We implemented a controlled defoliation experiment on mature Tamarix spp.-a dominant riparian woody shrub/tree that has evolved with intense herbivory pressure-to test two interrelated hypotheses: (1) Repeated defoliation disproportionately impacts aboveground versus belowground NSC storage. (2) Defoliation disproportionately impacts starch versus soluble sugar storage. Hypotheses were tested by transplanting six Tamarix seedlings into each of eight cylinder mesocosms (2 m diameter, 1 m in depth). After 2.5 years, plants in four of the eight mesocosms were mechanically defoliated repeatedly over a single growing season, and all plants were harvested in the following spring. Defoliation had no impact on either above- or belowground soluble sugar pools. However, starch in defoliated plants dropped to 55% and 26% in stems and roots, respectively, relative to control plants, resulting in an over 2-fold higher soluble sugar to starch ratio in defoliated plants. The results suggest that defoliation occurring over a single growing season does not impact immediate plant functions such as osmoregulation, but depleted starch could limit future fitness, particularly where defoliation occurs over multiple years. These results improve our understanding of how woody plants cope with episodic defoliation caused by foliage herbivory and other disturbances.
Substances chimiques
Sugars
0
Starch
9005-25-8
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1343-1353Informations de copyright
© 2021 Botanical Society of America.
Références
Allred, K. W. 2002. Identification and taxonomy of (Tamaricaceae) in New Mexico. Desert Plants 18: 26-32.
Amthor, J. S. 2000. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms 30 years later. Annals of Botany 86: 1-20.
Bateman, H. L., T. L. Dudley, D. W. Bean, S. M. Ostoja, K. R. Hultine, and M. J. Kuehn. 2010. A river system to watch: documenting the effects of saltcedar (Tamarix spp.) biocontrol in the Virgin River Valley. Ecological Restoration 28: 405-410.
Bean, D. W., T. L. Dudley, and K. R. Hultine. 2013. Bring on the beetles! The biology of tamarisk biological control. In A. Sher and M. Quigley [eds.], Tamarix: a case study of ecological change in the American West, 377-403. Oxford University Press, NY, NY, USA.
Bean, D. W., and T. L. Dudley. 2018. A synoptic review of Tamarix biocontrol in North America: tracking success in the midst of controversy. BioControl 63: 361-376.
Bell, T. L., and F. Ojeda. 1999. Underground starch storage in Erica species of the Cape Floristic Region - differences between seeders and resprouters. New Phytologist 144: 143-152.
Bush, S. E., K. R. Hultine, J. S. Sperry, and J. R. Ehleringer. 2010. Calibration of heat dissipation sap-flux probes on ring- and diffuse-porous trees. Tree Physiology 30: 1545-1554.
Chow, P. S., and S. M. Landhäusser. 2004. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiology 24: 1129-1136.
Coley, P. D., J. P., Bryant, and F. S., Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899.
Dietze, M. C., A. Sala, M. S. Carbone, C. I. Czimczik, J. A. Mantooth, A. D., Richardson, and R. Vargas. 2014. Nonstructural carbon in woody plants. Annual Review of Plant Biology 65: 667-687.
Drus, G. M., T. L. Dudley, C. M. D'Antonio, T. J. Even, M. L. Brooks, and J. R. Matchett. 2014. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality. Biological Control 77: 29-40.
Dudley, T. L., and D.W. Bean. 2012. Tamarisk biocontrol, endangered species risk, and resolution of conflict through riparian restoration. BioControl 57: 331-347.
Fajardo, A., F. I. Piper, and G. Hoch. 2013. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany 112: 623-631.
Friedman, J., G. T. Auble, P. B. Shafroth, M. L. Scott, M. F. Merigliano, M. D. Freehling, and E. R. Griffen. 2005. Dominance of non-native riparian trees in western USA. Biological Invasions 7: 747-751.
Gaskin, J. F., and D. J. Kazmer. 2009. Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA. Biological Invasions 11: 1121-1130.
Gaskin, J. F., and B. Schaal. 2002. Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Proceedings of the National Academy of Science, USA 99: 11256-11259.
Germino, M. J. 2015. A carbohydrate quandary. Tree Physiology 35: 1141-1145.
Gibson, S. I. 2005. Control of plant development and gene expression by sugar signaling. Current Opinion in Plant Biology 8: 93-102.
Gil, R., M. Boscaiu, C. Lull, I. Bautista, A. Lidon, and O. Vicente. 2013. Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology 40: 805-818.
Graham, D., and B. P. Patterson. 1982. Responses of plants to low, nonfreezing temperatures: proteins, metabolism and acclimation. Annual Review of Plant Physiology 33: 347-372.
Granier, A. 1987. Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements. Tree Physiology 3: 309-320.
Hartmann, H., and S. Trumbore. 2016. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. New Phytologist 211: 386-403.
Hudgeons, J. L., A. E. Knutson, K. M. Heinz, C. J. DeLoach, T. L. Dudley, R. R. Pattison, and J. R. Kiniry. 2007. Defoliation by introduced Diorhabda elongata leaf beetles (Coleoptera: Chrysomelidae) reduces carbohydrate reserves and regrowth of Tamarix (Tamaricaceae). Biological Control 43: 213-221.
Hultine, K. R., J. Belnap, C. van Riper, J. R. Ehleringer, P. E. Dennison, M. E. Lee, P. L. Nager, et al. 2010a. Tamarisk biocontrol in the western United States: ecological and societal implications. Frontiers in Ecology and the Environment 8: 467-474.
Hultine, K. R., P. L. Nagler, K. Morino, S. E. Bush, K. G. Burtch, P. E. Dennison, E. P. Glenn, and J. R. Ehleringer. 2010b. Sap-flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata). Agricultural and Forest Meteorology 150: 1467-1475.
Hultine, K. R., T. L. Dudley, D. F. Koepke, D. W. Bean, E. P. Glenn, and A. M. Lambert. 2015. Patterns of herbivory-induced mortality of a dominant non-native tree/shrub (Tamarix spp.) in a southwestern US watershed. Biological Invasions 17: 1729-1742.
Hummel, I., F. Pantin, R. Sulpice, M. Piques, M. Dauzet, A. Christophe, M. Pervent, et al. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integral perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiology 154: 357-372.
Hussey, A. M., B. Kimball, and J. M. Friedman. 2011. Assessment of tannin variation in tamarisk foliage across a latitudinal gradient. Open Environmental and Biological Monitoring Journal 4: 32-35.
Jacquet, J. S., A. Bosc, A. O'Grady, and H. Jactel. 2014. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates. Tree Physiology 34: 367-376.
Johnson, D. M., K. A. McCulloh, D. R. Woodruff, and F. C. Meinzer. 2012. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Science 195: 48-53.
Kennard, D., N. Louden, D. Germoets, S. Ortega, E. Gonzalez, D. Bean, et al. 2016. Tamarix dieback and vegetation patterns following release of the northern tamarisk (Diorhabda carinulata) in western Colorado. Biological Control 101: 114-122.
Kovalev, O. V. (1995). Co-evolution of the tamarisk (Tamaricaceae) and pest arthropods (Insecta: Arachnida: Acarina), with special reference to biological control prospects. Sofia: Pensoft.
Landhäusser, S. M., and V. J. Lieffers. 2012. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees, Structure and Function 26: 653-661.
Long, R. W., S. E. Bush, K. C. Grady, D. S. Smith, D. L. Potts, C. M. D'Antonio, T. L. Dudley, et al. 2017. Can local adaptation explain varying patterns of herbivory tolerance in a recently introduced woody plant in North America? Conservation Physiology 5: cox016.
Long, R. W., T. L. Dudley, C. M. D'Antonio, K. C. Grady, S. E. Bush, and K. R. Hultine. 2021. Spender versus savers: Climate-induced carbon allocation trade-offs in a recently introduced woody plant. Functional Ecology 35: 1640-1654.
Martinez-Vilalta, J., A. Sala, D. Asenio, L. Galiano, G. Hoch, S. Palacio, F. I. Piper, and F. Lloret. 2016. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs 86: 495-516.
Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.
Pattison, R. R., C. M. D'Antonio, and T. L. Dudley. 2011a. Biological control reduces growth, and alters water relations of the saltcedar tree (Tamarix spp.) in western Nevada, USA. Journal of Arid Environments 75: 346-352.
Pattison, R. R., C. M. D'Antonio, T. L. Dudley, K. K. Allander, and B. Rice. 2011b. Early impacts of biological control on canopy cover and water use of the invasive saltcedar tree (Tamarix spp.) in western Nevada, USA. Oecologia 165: 605-616.
Paxton, E. H., T. C. Theimer, and M. K. Sogge. 2011. Tamarisk biocontrol using tamarisk beetles: potential consequences for riparian birds in the southwestern United States. The Condor 113: 255-265.
Piper, F. I., and A. Fajardo. 2014. Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. Journal of Ecology 102: 1101-1111.
Piper, F. I., and S. Paula. 2020. The role of nonstructural carbohydrates storage in forest resilience under climate change. Current Forest Reports 6: 1-13.
Poorter, H., C. Remkes, and H. Lambers. 1990. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiology 94: 621-627.
Puri, E., G. Hoch, and C. Körner. 2015. Defoliation reduces growth but not carbon reserves in Mediterranean Pinus pinaster trees. Trees, Structure and Function 29: 1187-1196.
Quentin, A. G., E. A. Pinkard, C. L. Beadle, T. J. Wardlaw, S. Paterson, and C. L. Mohammed. 2010. Do artificial and natural defoliation have similar effects on physiology of Eucalyptus globulus Labill. seedlings? Annals of Forest Science 67: 203.
Quentin, A. G., E. A. Pinkard, M. G. Ryan, D. T. Tissue, A. S. Bagget, H. D. Adams, P. Maillard, et al. 2015. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology 35: 1146-1165.
Savage, J. A., M. J. Clearwater, D. F. Haines, T. Klein, M. Mencuccini, S. Sevanto, R. Turgeon, and C. Zhanget. 2016. Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology? Plant, Cell and Environment 39: 709-725.
Sexton, J. P., J. K. McKay, and A. Sala. 2002. Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecological Applications 12: 1652-1660.
Wiley, E., S. Huepenbecker, B. B. Cooper, and B. R. Helliker. 2013. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiology 33: 1216-1228.
Williams, W. I., J. M. Friedman, J. F. Gaskin, and A. P. Norton. 2014. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent. Evolutionary Applications 7: 381-393.
Zeppel, M. J. B., W. R. L. Anderegg, H. D. Adams, P. Hudson, A. Cook, R. Rumman, D. Eamus, D. T. Tissue, and S. W. Pacala. 2019. Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin. Ecology and Evolution 9: 5348-5361.
Zavaleta, E. S. 2000. The economic value of controlling an invasive shrub. Ambio 29: 462-467.